Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
J Nanobiotechnology. 2019 Feb 5;17(1):24. doi: 10.1186/s12951-019-0456-4.
Silica nanoparticles (SiNPs) are widely used for biosensing and diagnostics, and for the targeted delivery of therapeutic agents. Safety concerns about the biomedical and clinical applications of SiNPs have been raised, necessitating analysis of the effects of their intrinsic properties, such as sizes, shapes, and surface physicochemical characteristics, on human health to minimize risk in biomedical applications. In particular, SiNP size-associated toxicological effects, and the underlying molecular mechanisms in the vascular endothelium remain unclear. This study aimed to elucidate the detailed mechanisms underlying the cellular response to exposure to trace amounts of SiNPs and to determine applicable size criteria for biomedical application.
To clarify whether these SiNP-mediated cytotoxicity due to induction of apoptosis or necrosis, human ECs were treated with SiNPs of four different non-overlapping sizes under low serum-containing condition, stained with annexin V and propidium iodide (PI), and subjected to flow cytometric analysis (FACS). Two types of cell death mechanisms were assessed in terms of production of reactive oxygen species (ROS), endoplasmic reticulum (ER) stress induction, and autophagy activity.
Spherical SiNPs had a diameter of 21.8 nm; this was further increased to 31.4, 42.9, and 56.7 nm. Hence, we investigated these effects in human endothelial cells (ECs) treated with these nanoparticles under overlap- or agglomerate-free conditions. The 20-nm SiNPs, but not SiNPs of other sizes, significantly induced apoptosis and necrosis. Surprisingly, the two types of cell death occurred independently and through different mechanisms. Apoptotic cell death resulted from ROS-mediated ER stress. Furthermore, autophagy-mediated necrotic cell death was induced through the PI3K/AKT/eNOS signaling axis. Together, the present results indicate that SiNPs within a diameter of < 20-nm pose greater risks to cells in terms of cytotoxic effects.
These data provide novel insights into the size-dependence of the cytotoxic effects of silica nanoparticles and the underlying molecular mechanisms. The findings are expected to inform the applicable size range of SiNPs to ensure their safety in biomedical and clinical applications.
硅纳米颗粒(SiNPs)广泛应用于生物传感和诊断,以及治疗剂的靶向递送。由于对 SiNPs 的生物医学和临床应用的安全性表示担忧,因此需要分析其内在特性(如大小、形状和表面物理化学特性)对人类健康的影响,以最大限度地降低生物医学应用中的风险。特别是,SiNP 大小相关的毒理学效应以及血管内皮中的潜在分子机制尚不清楚。本研究旨在阐明细胞对暴露于痕量 SiNPs 的反应的详细机制,并确定适用于生物医学应用的尺寸标准。
为了阐明这些 SiNP 介导的细胞毒性是否是由于诱导细胞凋亡或坏死引起的,在低血清条件下,用四种不同不重叠大小的 SiNPs 处理人 ECs,用膜联蛋白 V 和碘化丙啶(PI)染色,并用流式细胞术分析(FACS)进行分析。从活性氧(ROS)产生、内质网(ER)应激诱导和自噬活性两方面评估两种细胞死亡机制。
球形 SiNPs 的直径为 21.8nm;进一步增加到 31.4、42.9 和 56.7nm。因此,我们在无重叠或聚集的条件下研究了这些纳米粒子在人内皮细胞(ECs)中的作用。20nm 的 SiNPs,但不是其他大小的 SiNPs,显著诱导细胞凋亡和坏死。令人惊讶的是,这两种类型的细胞死亡是独立发生的,通过不同的机制。凋亡细胞死亡是由 ROS 介导的 ER 应激引起的。此外,通过 PI3K/AKT/eNOS 信号轴诱导自噬介导的坏死性细胞死亡。总之,这些结果表明,直径小于 20nm 的 SiNPs 对细胞的细胞毒性作用风险更大。
这些数据为硅纳米颗粒的细胞毒性的尺寸依赖性和潜在的分子机制提供了新的见解。这些发现有望为 SiNPs 的适用尺寸范围提供信息,以确保其在生物医学和临床应用中的安全性。