Suppr超能文献

通过配位化学对基于二氧化硅的纳米粒子进行放射性标记:基本原理、策略及应用。

Radiolabeling Silica-Based Nanoparticles via Coordination Chemistry: Basic Principles, Strategies, and Applications.

机构信息

Departments of Radiology, Medical Physics, Biomedical Engineering, Materials Science & Engineering, and Pharmaceutical Sciences (Drug Delivery Core) , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States.

Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center , Shenzhen University , Shenzhen 518060 , China.

出版信息

Acc Chem Res. 2018 Mar 20;51(3):778-788. doi: 10.1021/acs.accounts.7b00635. Epub 2018 Feb 28.

Abstract

As one of the most biocompatible and well-tolerated inorganic nanomaterials, silica-based nanoparticles (SiNPs) have received extensive attention over the last several decades. Recently, positron emission tomography (PET) imaging of radiolabeled SiNPs has provided a highly sensitive, noninvasive, and quantitative readout of the organ/tissue distribution, pharmacokinetics, and tumor targeting efficiency in vivo, which can greatly expedite the clinical translation of these promising NPs. Encouraged by the successful PET imaging of patients with metastatic melanoma using I-labeled ultrasmall SiNPs (known as Cornell dots or C dots) and their approval as an Investigational New Drug (IND) by the United States Food and Drug Administration, different radioisotopes (Cu, Zr, F, Ga, I, etc.) have been reported to radiolabel a wide variety of SiNPs-based nanostructures, including dense silica (dSiO), mesoporous silica (MSN), biodegradable mesoporous silica (bMSN), and hollow mesoporous silica nanoparticles (HMSN). With in-depth knowledge of coordination chemistry, abundant silanol groups (-Si-O-) on the silica surface or inside mesoporous channels not only can be directly used for chelator-free radiolabeling but also can be readily modified with the right chelators for chelator-based labeling. However, integrating these labeling strategies for constructing stably radiolabeled SiNPs with high efficiency has proven difficult because of the complexity of the involved key parameters, such as the choice of radioisotopes and chelators, nanostructures, and radiolabeling strategy. In this Account, we present an overview of recent progress in the development of radiolabeled SiNPs for cancer theranostics in the hope of speeding up their biomedical applications and potential translation into the clinic. We first introduce the basic principles and mechanisms for radiolabeling SiNPs via coordination chemistry, including general rules of selecting proper radioisotopes, engineering silica nanoplatforms (e.g., dSiO, MSN, HMSN) accordingly, and chelation strategies for enhanced labeling efficiency and stability, on which our group has focused over the past decade. Generally, the medical applications guide the choice of specific SiNPs for radiolabeling by considering the inherent functionality of SiNPs. The radioisotopes can then be determined according to the amenability of the particular SiNPs for chelator-based or chelator-free radiolabeling to obtain high labeling stability in vivo, which is a prerequisite for PET to truly reflect the behavior of SiNPs since PET imaging detects the isotopes rather than nanoparticles. Next, we highlight several recent representative biomedical applications of radiolabeled SiNPs including molecular imaging to detect specific lesions, PET-guided drug delivery, SiNP-based theranostic cancer agents, and clinical studies. Finally, the challenges and prospects of radiolabeled SiNPs are briefly discussed toward clinical cancer research. We hope that this Account will clarify the recent progress on the radiolabeling of SiNPs for specific medical applications and generate broad interest in integrating nanotechnology and PET imaging. With several ongoing clinical trials, radiolabeled SiNPs offer great potential for future patient stratification and cancer management in clinical settings.

摘要

作为最具生物相容性和耐受性的无机纳米材料之一,基于硅的纳米粒子(SiNPs)在过去几十年中受到了广泛关注。最近,放射性标记的 SiNPs 的正电子发射断层扫描(PET)成像提供了一种高度敏感、非侵入性和定量的器官/组织分布、药代动力学和体内肿瘤靶向效率的读出,这极大地加速了这些有前途的 NPs 的临床转化。受使用 I 标记的超小 SiNPs(称为 Cornell 点或 C 点)对转移性黑色素瘤患者进行 PET 成像的成功鼓舞,以及美国食品和药物管理局将其作为研究性新药(IND)批准,不同的放射性同位素(Cu、Zr、F、Ga、I 等)已被报道用于放射性标记各种基于 SiNPs 的纳米结构,包括致密二氧化硅(dSiO)、介孔二氧化硅(MSN)、可生物降解的介孔二氧化硅(bMSN)和中空介孔硅纳米粒子(HMSN)。通过深入了解配位化学,二氧化硅表面或介孔通道内丰富的硅醇基团(-Si-O-)不仅可以直接用于无螯合剂标记,而且可以通过适当的螯合剂进行修饰,用于基于螯合剂的标记。然而,由于涉及的关键参数的复杂性,例如放射性同位素和螯合剂、纳米结构和放射性标记策略的选择,将这些标记策略整合到高效稳定的放射性标记 SiNPs 中一直具有挑战性。在本报告中,我们介绍了用于癌症治疗的放射性标记 SiNPs 的最新进展概述,希望加快它们的生物医学应用和潜在的临床转化。我们首先介绍了通过配位化学对 SiNPs 进行放射性标记的基本原理和机制,包括选择合适的放射性同位素的一般规则、相应的硅纳米平台工程(例如 dSiO、MSN、HMSN)以及提高标记效率和稳定性的螯合策略,这是我们组在过去十年中重点关注的内容。一般来说,放射性标记 SiNPs 的具体选择由 SiNPs 的固有功能决定。然后可以根据特定 SiNPs 的适用于基于螯合剂或无螯合剂的放射性标记的情况来确定放射性同位素,以获得体内高标记稳定性,这是 PET 真正反映 SiNPs 行为的前提,因为 PET 成像检测的是同位素而不是纳米粒子。接下来,我们重点介绍了放射性标记 SiNPs 的几个最近的代表性生物医学应用,包括用于检测特定病变的分子成像、PET 引导的药物输送、基于 SiNP 的治疗性癌症试剂以及临床研究。最后,简要讨论了放射性标记 SiNPs 的挑战和前景,以期用于临床癌症研究。我们希望本报告能够阐明针对特定医疗应用的 SiNPs 放射性标记的最新进展,并激发人们对纳米技术和 PET 成像的整合产生广泛兴趣。随着几项正在进行的临床试验,放射性标记的 SiNPs 为未来的患者分层和临床环境中的癌症管理提供了巨大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c00f/5878690/3992d93d0a4d/nihms947286f1.jpg

相似文献

引用本文的文献

8
Cancer Brachytherapy at the Nanoscale: An Emerging Paradigm.纳米尺度下的癌症近距离放射治疗:一种新兴范式
Chem Biomed Imaging. 2023 Nov 21;2(1):4-26. doi: 10.1021/cbmi.3c00092. eCollection 2024 Jan 22.

本文引用的文献

7
Harnessing the Power of Nanotechnology for Enhanced Radiation Therapy.利用纳米技术提高放射治疗效果。
ACS Nano. 2017 Jun 27;11(6):5233-5237. doi: 10.1021/acsnano.7b03675. Epub 2017 Jun 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验