Suppr超能文献

基于多路并发的实时多目标跟踪。

Real-Time Multiobject Tracking Based on Multiway Concurrency.

机构信息

College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China.

College of Science, Zhejiang University of Technology, Hangzhou 310023, China.

出版信息

Sensors (Basel). 2021 Jan 20;21(3):685. doi: 10.3390/s21030685.

Abstract

This paper explored a pragmatic approach to research the real-time performance of a multiway concurrent multiobject tracking (MOT) system. At present, most research has focused on the tracking of single-image sequences, but in practical applications, multiway video streams need to be processed in parallel by MOT systems. There have been few studies on the real-time performance of multiway concurrent MOT systems. In this paper, we proposed a new MOT framework to solve multiway concurrency scenario based on a tracking-by-detection (TBD) model. The new framework mainly focuses on concurrency and real-time based on limited computing and storage resources, while considering the algorithm performance. For the former, three aspects were studied: (1) Expanded width and depth of tracking-by-detection model. In terms of width, the MOT system can support the process of multiway video sequence at the same time; in terms of depth, image collectors and bounding box collectors were introduced to support batch processing. (2) Considering the real-time performance and multiway concurrency ability, we proposed one kind of real-time MOT algorithm based on directly driven detection. (3) Optimization of system level-we also utilized the inference optimization features of NVIDIA TensorRT to accelerate the deep neural network (DNN) in the tracking algorithm. To trade off the performance of the algorithm, a negative sample (false detection sample) filter was designed to ensure tracking accuracy. Meanwhile, the factors that affect the system real-time performance and concurrency were studied. The experiment results showed that our method has a good performance in processing multiple concurrent real-time video streams.

摘要

本文探讨了一种实用的方法来研究多向并发多目标跟踪(MOT)系统的实时性能。目前,大多数研究都集中在单图像序列的跟踪上,但在实际应用中,MOT 系统需要并行处理多路视频流。对于多向并发 MOT 系统的实时性能,研究较少。本文提出了一种新的 MOT 框架,基于跟踪检测(TBD)模型来解决多向并发场景。新框架主要关注基于有限计算和存储资源的并发和实时性,同时考虑算法性能。对于前者,研究了三个方面:(1)扩展 TBD 模型的宽度和深度。在宽度方面,MOT 系统可以同时支持多路视频序列的处理;在深度方面,引入了图像收集器和边界框收集器以支持批处理。(2)考虑实时性能和多向并发能力,提出了一种基于直接驱动检测的实时 MOT 算法。(3)系统级优化——还利用 NVIDIA TensorRT 的推理优化功能加速跟踪算法中的深度神经网络(DNN)。为了权衡算法性能,设计了负样本(误检样本)过滤器以确保跟踪精度。同时,研究了影响系统实时性能和并发能力的因素。实验结果表明,我们的方法在处理多个并发实时视频流方面具有良好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/108d/7864016/5e42fb151030/sensors-21-00685-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验