School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom.
School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
Proc Natl Acad Sci U S A. 2021 Feb 2;118(5). doi: 10.1073/pnas.2016917118.
The lack of interpretability and trust is a much-criticized feature of deep neural networks. In fully connected nets, the signaling between inner layers is scrambled because backpropagation training does not require perceptrons to be arranged in any particular order. The result is a black box; this problem is particularly severe in scientific computing and digital signal processing (DSP), where neural nets perform abstract mathematical transformations that do not reduce to features or concepts. We present here a group-theoretical procedure that attempts to bring inner-layer signaling into a human-readable form, the assumption being that this form exists and has identifiable and quantifiable features-for example, smoothness or locality. We applied the proposed method to DEERNet (a DSP network used in electron spin resonance) and managed to descramble it. We found considerable internal sophistication: the network spontaneously invents a bandpass filter, a notch filter, a frequency axis rescaling transformation, frequency-division multiplexing, group embedding, spectral filtering regularization, and a map from harmonic functions into Chebyshev polynomials-in 10 min of unattended training from a random initial guess.
深度神经网络缺乏可解释性和可信任性,这是饱受批评的一点。在全连接网络中,由于反向传播训练不需要按特定顺序排列感知机,因此内部层之间的信号传递是混乱的。结果是一个黑盒;这个问题在科学计算和数字信号处理 (DSP) 中尤为严重,在这些领域中,神经网络执行抽象的数学变换,而这些变换不能简化为特征或概念。我们在这里提出了一种群论方法,试图将内部层的信号传递转化为人类可读的形式,假设这种形式存在,并且具有可识别和可量化的特征,例如平滑度或局部性。我们将所提出的方法应用于 DEERNet(一种用于电子自旋共振的 DSP 网络),并成功地对其进行了去混淆。我们发现了相当大的内部复杂性:该网络自发地发明了带通滤波器、陷波滤波器、频率轴重采样变换、频分复用、分组嵌入、频谱滤波正则化,以及将调和函数映射到切比雪夫多项式的映射——在没有人工干预的情况下,从随机初始猜测进行 10 分钟的训练。