Suppr超能文献

比较可进化形态机器人控制器的优化方法。

Comparing Robot Controller Optimization Methods on Evolvable Morphologies.

机构信息

Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands

Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands Technology Innovation Institute, Abu Dhabi, P.O. Box: 9639, Masdar City, UAE

出版信息

Evol Comput. 2024 Jun 3;32(2):105-124. doi: 10.1162/evco_a_00334.

Abstract

In this paper, we compare Bayesian Optimization, Differential Evolution, and an Evolution Strategy employed as a gait-learning algorithm in modular robots. The motivational scenario is the joint evolution of morphologies and controllers, where "newborn" robots also undergo a learning process to optimize their inherited controllers (without changing their bodies). This context raises the question: How do gait-learning algorithms compare when applied to various morphologies that are not known in advance (and thus need to be treated as without priors)? To answer this question, we use a test suite of twenty different robot morphologies to evaluate our gait-learners and compare their efficiency, efficacy, and sensitivity to morphological differences. The results indicate that Bayesian Optimization and Differential Evolution deliver the same solution quality (walking speed for the robot) with fewer evaluations than the Evolution Strategy. Furthermore, the Evolution Strategy is more sensitive for morphological differences (its efficacy varies more between different morphologies) and is more subject to luck (repeated runs on the same morphology show greater variance in the outcomes).

摘要

在本文中,我们将比较贝叶斯优化、差分进化和进化策略在模块化机器人中的步态学习算法中的应用。激励场景是形态和控制器的联合进化,其中“新生儿”机器人也需要经历一个学习过程来优化他们继承的控制器(而不改变他们的身体)。这种情况下提出了一个问题:当应用于各种事先未知的(因此需要视为无先验的)形态时,步态学习算法如何进行比较?为了回答这个问题,我们使用了二十种不同机器人形态的测试套件来评估我们的步态学习者,并比较它们的效率、效果和对形态差异的敏感性。结果表明,贝叶斯优化和差分进化在评估次数较少的情况下提供了相同的解决方案质量(机器人的步行速度)。此外,进化策略对形态差异更敏感(其效果在不同形态之间变化更大),并且更容易受到运气的影响(在相同形态上重复运行会导致结果的更大差异)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验