Suppr超能文献

便当盒:一种用于在虚拟现实中可视化4D模拟集合的交互式可缩放小多重技术。

Bento Box: An Interactive and Zoomable Small Multiples Technique for Visualizing 4D Simulation Ensembles in Virtual Reality.

作者信息

Johnson Seth, Orban Daniel, Runesha Hakizumwami Birali, Meng Lingyu, Juhnke Bethany, Erdman Arthur, Samsel Francesca, Keefe Daniel F

机构信息

Interactive Visualization Lab, Department of Computer Science, University of Minnesota, Minneapolis, MN, United States.

Research Computing Center, University of Chicago, Chicago, IL, United States.

出版信息

Front Robot AI. 2019 Jul 23;6:61. doi: 10.3389/frobt.2019.00061. eCollection 2019.

Abstract

We present Bento Box, a virtual reality data visualization technique and bimanual 3D user interface for exploratory analysis of 4D data ensembles. Bento Box helps scientists and engineers make detailed comparative judgments about multiple time-varying data instances that make up a data ensemble (e.g., a group of 10 parameterized simulation runs). The approach is to present an organized set of complementary volume visualizations juxtaposed in a grid arrangement, where each column visualizes a single data instance and each row provides a new view of the volume from a different perspective and/or scale. A novel bimanual interface enables users to select a sub-volume of interest to create a new row on-the-fly, scrub through time, and quickly navigate through the resulting virtual "bento box." The technique is evaluated through a real-world case study, supporting a team of medical device engineers and computational scientists using testing (supercomputer simulations) to redesign cardiac leads. The engineers confirmed hypotheses and developed new insights using a Bento Box visualization. An evaluation of the technical performance demonstrates that the proposed combination of data sampling strategies and clipped volume rendering is successful in displaying a juxtaposed visualization of fluid-structure-interaction simulation data (39 GB of raw data) at interactive VR frame rates.

摘要

我们展示了“便当盒”,这是一种虚拟现实数据可视化技术和用于探索性分析四维数据集的双手三维用户界面。“便当盒”帮助科学家和工程师对构成数据集(例如一组10次参数化模拟运行)的多个随时间变化的数据实例进行详细的比较判断。该方法是呈现一组以网格排列并置的互补体可视化,其中每列可视化单个数据实例,每行从不同角度和/或比例提供该体的新视图。一种新颖的双手界面使用户能够选择感兴趣的子体,即时创建新行,浏览时间,并快速浏览生成的虚拟“便当盒”。通过一个实际案例研究对该技术进行了评估,该案例支持一组医疗设备工程师和计算科学家使用测试(超级计算机模拟)重新设计心脏导联。工程师们使用“便当盒”可视化确认了假设并获得了新的见解。对技术性能的评估表明,所提出的数据采样策略和裁剪体渲染的组合成功地以交互式虚拟现实帧率显示了流固耦合模拟数据(39GB原始数据)的并置可视化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/494a/7805880/1a66f43c9e5c/frobt-06-00061-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验