Department of Informatics, University of Bergen, Bergen, Norway.
IEEE Trans Vis Comput Graph. 2013 Mar;19(3):495-513. doi: 10.1109/TVCG.2012.110.
Visualization and visual analysis play important roles in exploring, analyzing, and presenting scientific data. In many disciplines, data and model scenarios are becoming multifaceted: data are often spatiotemporal and multivariate; they stem from different data sources (multimodal data), from multiple simulation runs (multirun/ensemble data), or from multiphysics simulations of interacting phenomena (multimodel data resulting from coupled simulation models). Also, data can be of different dimensionality or structured on various types of grids that need to be related or fused in the visualization. This heterogeneity of data characteristics presents new opportunities as well as technical challenges for visualization research. Visualization and interaction techniques are thus often combined with computational analysis. In this survey, we study existing methods for visualization and interactive visual analysis of multifaceted scientific data. Based on a thorough literature review, a categorization of approaches is proposed. We cover a wide range of fields and discuss to which degree the different challenges are matched with existing solutions for visualization and visual analysis. This leads to conclusions with respect to promising research directions, for instance, to pursue new solutions for multirun and multimodel data as well as techniques that support a multitude of facets.
可视化和可视分析在探索、分析和呈现科学数据方面发挥着重要作用。在许多学科中,数据和模型场景变得越来越多样化:数据通常具有时空和多变量的特点;它们来自不同的数据来源(多模态数据),来自多个模拟运行(多运行/集合数据),或者来自相互作用现象的多物理模拟(来自耦合模拟模型的多模型数据)。此外,数据的维度不同,或者在各种类型的网格上进行结构化,这些数据需要在可视化中进行关联或融合。这种数据特征的异质性为可视化研究带来了新的机遇和技术挑战。因此,可视化和交互技术通常与计算分析相结合。在本调查中,我们研究了多维科学数据的可视化和交互式可视分析的现有方法。基于对文献的深入回顾,提出了一种分类方法。我们涵盖了广泛的领域,并讨论了不同的挑战在多大程度上与可视化和可视分析的现有解决方案相匹配。这就得出了一些结论,指出了有前途的研究方向,例如,针对多运行和多模型数据以及支持多种方面的技术,寻求新的解决方案。