Suppr超能文献

用于运动识别的印刷应变传感器:材料、制造方法及机器学习算法综述

Printed Strain Sensors for Motion Recognition: A Review of Materials, Fabrication Methods, and Machine Learning Algorithms.

作者信息

Zavanelli Nathan, Kwon Kangkyu, Yeo Woon-Hong

机构信息

George W. Woodruff School of Mechanical EngineeringGeorgia Institute of Technology Atlanta GA 30332 USA.

IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and NanotechnologyGeorgia Institute of Technology Atlanta GA 30332 USA.

出版信息

IEEE Open J Eng Med Biol. 2023 Nov 6;6:353-381. doi: 10.1109/OJEMB.2023.3330290. eCollection 2025.

Abstract

Recent studies in functional nanomaterials with advanced macro, micro, and nano-scale structures have yielded substantial improvements in human-interfaced strain sensors for motion and gesture recognition. Furthermore, fundamental advances in nanomaterial printing have been developed and leveraged to translate these materials and mechanical innovations into practical applications. Significant progress in machine learning for human-interfaced strain sensing has unlocked numerous opportunities to improve lives and the human experience through healthcare innovations, sports performance monitoring, and human-machine interfaces. However, several key challenges still must be overcome if strain sensors can become ubiquitous tools for human motion recognition. This review begins with a summary of the critical strain-sensing mechanisms employed today and how recent works have sought to push their boundaries. It then proceeds to cover the primary functional materials used in wearable strain sensors from a performance and printability perspective. Next is a review of recent advances in nanomaterial printing to produce the complex structures necessary for functional devices. Next, we summarize machine learning approaches for human gesture recognition and the myriad applications and use cases for human-interfaced strain sensors. Finally, it concludes with a discussion of challenges and opportunities for future research in the field.

摘要

近期对具有先进宏观、微观和纳米尺度结构的功能纳米材料的研究,已使用于运动和手势识别的人机接口应变传感器有了显著改进。此外,纳米材料印刷技术也取得了基础性进展,并被用于将这些材料和机械创新转化为实际应用。人机接口应变传感领域机器学习的重大进展,为通过医疗创新、运动表现监测和人机接口改善生活及人类体验带来了众多机遇。然而,若应变传感器要成为人类运动识别的普遍工具,仍有几个关键挑战必须克服。本综述首先总结了当今使用的关键应变传感机制,以及近期的研究如何试图突破其界限。接着从性能和可印刷性角度介绍了可穿戴应变传感器中使用的主要功能材料。接下来回顾了纳米材料印刷技术的最新进展,以制造功能器件所需的复杂结构。然后,我们总结了用于人类手势识别的机器学习方法,以及人机接口应变传感器的众多应用和使用案例。最后,讨论了该领域未来研究面临的挑战和机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ce/12251120/af09e2bcb51f/yeo1-3330290.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验