Wan Fang, Song Chaoyang
AncoraSpring, Inc. and SUSTech Institute of Robotics, Southern University of Science and Technology, Shenzhen, China.
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China.
Front Robot AI. 2020 May 29;7:65. doi: 10.3389/frobt.2020.00065. eCollection 2020.
Point cloud data provides three-dimensional (3D) measurement of the geometric details in the physical world, which relies heavily on the quality of the machine vision system. In this paper, we explore the potentials of a 3D scanner of high quality (15 million points per second), accuracy (up to 0.150 mm), and frame rate (up to 20 FPS) during static and dynamic measurements of the robot flange for direct hand-eye calibration and trajectory error tracking. With the availability of high-quality point cloud data, we can exploit the standardized geometric features on the robot flange for 3D measurement, which are directly accessible for hand-eye calibration problems. In the meanwhile, we tested the proposed flange-based calibration methods in a dynamic setting to capture point cloud data in a high frame rate. We found that our proposed method works robustly even in dynamic environments, enabling a versatile hand-eye calibration during motion. Furthermore, capturing high-quality point cloud data in real-time opens new doors for the use of 3D scanners, capable of detecting sensitive anomalies of refined details even in motion trajectories. Codes and sample data of this calibration method is provided at Github (https://github.com/ancorasir/flange_handeye_calibration).
点云数据提供了对物理世界中几何细节的三维(3D)测量,这在很大程度上依赖于机器视觉系统的质量。在本文中,我们探索了一种高质量(每秒1500万个点)、高精度(高达0.150毫米)和高帧率(高达20帧每秒)的3D扫描仪在机器人法兰的静态和动态测量中用于直接手眼校准和轨迹误差跟踪的潜力。有了高质量的点云数据,我们可以利用机器人法兰上的标准化几何特征进行3D测量,这些特征可直接用于手眼校准问题。同时,我们在动态环境中测试了所提出的基于法兰的校准方法,以高帧率捕获点云数据。我们发现,我们提出的方法即使在动态环境中也能稳健运行,能够在运动过程中进行通用的手眼校准。此外,实时捕获高质量的点云数据为3D扫描仪的使用打开了新的大门,即使在运动轨迹中也能够检测到精细细节的敏感异常。此校准方法的代码和示例数据可在Github(https://github.com/ancorasir/flange_handeye_calibration)上获取。