Suppr超能文献

有效粘性阻尼助力有腿运动中的形态计算。

Effective Viscous Damping Enables Morphological Computation in Legged Locomotion.

作者信息

Mo An, Izzi Fabio, Haeufle Daniel F B, Badri-Spröwitz Alexander

机构信息

Dynamic Locomotion Group, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.

Multi-Level Modeling in Motor Control and Rehabilitation Robotics, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.

出版信息

Front Robot AI. 2020 Aug 28;7:110. doi: 10.3389/frobt.2020.00110. eCollection 2020.

Abstract

Muscle models and animal observations suggest that physical damping is beneficial for stabilization. Still, only a few implementations of physical damping exist in compliant robotic legged locomotion. It remains unclear how physical damping can be exploited for locomotion tasks, while its advantages as sensor-free, adaptive force- and negative work-producing actuators are promising. In a simplified numerical leg model, we studied the energy dissipation from viscous and Coulomb damping during vertical drops with ground-level perturbations. A parallel spring- damper is engaged between touch-down and mid-stance, and its damper auto-decouples from mid-stance to takeoff. Our simulations indicate that an adjustable and viscous damper is desired. In hardware we explored effective viscous damping and adjustability, and quantified the dissipated energy. We tested two mechanical, leg-mounted damping mechanisms: a commercial hydraulic damper, and a custom-made pneumatic damper. The pneumatic damper exploits a rolling diaphragm with an adjustable orifice, minimizing Coulomb damping effects while permitting adjustable resistance. Experimental results show that the leg-mounted, hydraulic damper exhibits the most effective viscous damping. Adjusting the orifice setting did not result in substantial changes of dissipated energy per drop, unlike adjusting the damping parameters in the numerical model. Consequently, we also emphasize the importance of characterizing physical dampers during real legged impacts to evaluate their effectiveness for compliant legged locomotion.

摘要

肌肉模型和动物观察表明,物理阻尼有助于稳定。然而,在柔顺的有腿机器人运动中,物理阻尼的应用实例却很少。目前尚不清楚如何将物理阻尼用于运动任务,尽管其作为无传感器、自适应力和产生负功的致动器的优势很有前景。在一个简化的腿部数值模型中,我们研究了在有地面扰动的垂直下落过程中粘性阻尼和库仑阻尼的能量耗散。在触地和 stance 中期之间使用一个并联弹簧 - 阻尼器,其阻尼器在 stance 中期到起飞阶段自动解耦。我们的模拟表明需要一个可调节的粘性阻尼器。在硬件方面,我们探索了有效的粘性阻尼和可调节性,并对耗散能量进行了量化。我们测试了两种安装在腿部的机械阻尼机构:一种商用液压阻尼器和一种定制的气动阻尼器。气动阻尼器采用带有可调节节流孔的滚动隔膜,在允许可调节阻力的同时,将库仑阻尼效应降至最低。实验结果表明,安装在腿部的液压阻尼器表现出最有效的粘性阻尼。与在数值模型中调整阻尼参数不同,调整节流孔设置并没有导致每次下落的耗散能量发生实质性变化。因此,我们还强调了在实际腿部碰撞过程中表征物理阻尼器以评估其对柔顺有腿运动有效性的重要性。 (注:原文中“mid-stance”未明确中文释义,可根据上下文理解为“ stance 中期”,可能需要结合更专业的领域知识来准确翻译)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b0f/7805837/2fd341001953/frobt-07-00110-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验