Ruppert Felix, Badri-Spröwitz Alexander
Dynamic Locomotion Group, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
Front Neurorobot. 2019 Aug 13;13:64. doi: 10.3389/fnbot.2019.00064. eCollection 2019.
We investigate the role of lower leg muscle-tendon structures in providing serial elastic behavior to the hip actuator. We present a leg design with physical elastic elements in leg angle and virtual leg axis direction, and its impact onto energy efficient legged locomotion. By testing and comparing two robotic lower leg spring configurations, we can provide potential explanations of the functionality of similar animal leg morphologies with lower leg muscle-tendon network structures. We investigate the effects of leg angle compliance during locomotion. In a proof of concept, we show that a leg with a gastrocnemius inspired elasticity possesses elastic components that deflect in leg angle directions. The leg design with elastic elements in leg angle direction can store hip actuator energy in the series elastic element. We then show the leg's advantages in mechanical design in a vertical drop experiment. In the drop experiments the biarticular leg requires 46% less power. During drop loading, the leg adapts its posture and stores the energy in its springs. The increased energy storing capacity in leg angle direction reduces energy requirements and cost of transport by 31% during dynamic hopping to a cost of transport of 1.2 at 0.9 kg body weight. The biarticular robot leg design has major advantages, especially compared to more traditional robot designs. Despite its high degree of under-actuation, it is easy to converge into and maintain dynamic hopping locomotion. The presented control is based on a simple-to-implement, feed-forward pattern generator. The biarticular legs lightweight design can be rapidly assembled and is largely made from elements created by rapid prototyping. At the same time it is robust, and passively withstands drops from 200% body height. The biarticular leg shows, to the best of the authors' knowledge, the lowest achieved relative cost of transport documented for all dynamically hopping and running robots of 64% of a comparable natural runner's COT.
我们研究小腿肌肉 - 肌腱结构在为髋关节驱动器提供串联弹性行为方面的作用。我们提出一种在腿部角度和虚拟腿轴方向具有物理弹性元件的腿部设计,以及它对节能腿部运动的影响。通过测试和比较两种机器人小腿弹簧配置,我们可以对具有小腿肌肉 - 肌腱网络结构的类似动物腿部形态的功能提供潜在解释。我们研究运动过程中腿部角度顺应性的影响。在一个概念验证中,我们表明具有受腓肠肌启发的弹性的腿部拥有在腿部角度方向偏转的弹性组件。在腿部角度方向具有弹性元件的腿部设计可以将髋关节驱动器的能量存储在串联弹性元件中。然后我们在垂直下落实验中展示了该腿部在机械设计方面的优势。在下落实验中,双关节腿所需功率减少46%。在下落加载过程中,腿部调整其姿势并将能量存储在其弹簧中。在腿部角度方向增加的能量存储能力在动态跳跃过程中将能量需求和运输成本降低了31%,对于0.9千克体重的情况,运输成本降至1.2。双关节机器人腿部设计具有主要优势,特别是与更传统的机器人设计相比。尽管其欠驱动程度很高,但它很容易收敛并保持动态跳跃运动。所提出的控制基于一个易于实现的前馈模式发生器。双关节腿的轻量化设计可以快速组装,并且很大程度上由快速成型制造的元件制成。同时它很坚固,能够被动承受从200%身体高度的跌落。据作者所知,双关节腿展示了所有动态跳跃和奔跑机器人中记录的最低相对运输成本,为可比自然奔跑者运输成本的64%。