Kabza Adam M, Young Brian E, Kundu Nandini, Sczepanski Jonathan T
Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.
Emerg Top Life Sci. 2019 Nov;3(5):501-506. doi: 10.1042/etls20190102. Epub 2019 Aug 28.
The programmability of DNA/RNA-based molecular circuits provides numerous opportunities in the field of synthetic biology. However, the stability of nucleic acids remains a major concern when performing complex computations in biological environments. Our solution to this problem is L-(deoxy)ribose nucleic acids (L-DNA/RNA), which are mirror images (i.e. enantiomers) of natural D-nucleotides. L-oligonucleotides have the same physical and chemical properties as their natural counterparts, yet they are completely invisible to the stereospecific environment of biology. We recently reported a novel strand-displacement methodology for transferring sequence information between oligonucleotide enantiomers (which are incapable of base pairing with each other), enabling bio-orthogonal L-DNA/RNA circuits to be easily interfaced with living systems. In this perspective, we summarize these so-called "heterochiral" circuits, provide a viewpoint on their potential applications in synthetic biology, and discuss key problems that must be solved before achieving the ultimate goal of engineering complex and reliable functionality.
基于DNA/RNA的分子电路的可编程性在合成生物学领域提供了众多机会。然而,在生物环境中进行复杂计算时,核酸的稳定性仍然是一个主要问题。我们对这个问题的解决方案是L-(脱氧)核糖核酸(L-DNA/RNA),它们是天然D-核苷酸的镜像(即对映体)。L-寡核苷酸与其天然对应物具有相同的物理和化学性质,但它们对生物学的立体特异性环境完全不可见。我们最近报道了一种用于在寡核苷酸对映体(它们彼此不能碱基配对)之间传递序列信息的新型链置换方法,使生物正交的L-DNA/RNA电路能够轻松地与生命系统连接。从这个角度出发,我们总结了这些所谓的“异手性”电路,对它们在合成生物学中的潜在应用提出了观点,并讨论了在实现工程化复杂且可靠功能的最终目标之前必须解决的关键问题。