Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea.
Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea.
Clin Otolaryngol. 2021 May;46(3):501-507. doi: 10.1111/coa.13724. Epub 2021 Feb 4.
It remains unclear whether the use of adjunctive diagnostic screening methods improves the diagnostic efficacies of oral premalignant and cancerous lesions.
We evaluated the diagnostic accuracy of narrow-band imaging used to detect oral cancer and precancerous lesions defined employing different narrow-band imaging criteria.
Systematic review and meta-analyses.
We searched PubMed, Scopus, the Web of Science, Embase, Google Scholar and the Cochrane Central Register of Controlled Trials to May 2020.
Three different criteria for oral mucosal vascular changes using narrow-band imaging were compared: class I: well-demarcated brownish areas with thick dark spots and/or winding vessels; class II: intraepithelial papillary capillary looping of grades 2, 3 and 4; and class III: intraepithelial papillary capillary looping of grades 3 and 4. Methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies (ver. 2) tool. We compared narrow-band imaging to conventional white-light imaging.
We included 10 prospective or retrospective studies (1374 patients). To detect all dysplastic and cancerous lesions, the class I criteria afforded the optimal specificity and sensitivity; the area under the summary receiver operating characteristic curve was 0.918. To detect highly dysplastic and advanced cancerous lesions, the class III criteria afforded appropriate specificity and sensitivity. The summary receiver operating characteristic curve was 0.905. When using the class III criteria, narrow-band imaging afforded better specificity (0.941 [range 0.920, 0.9572], P < .0001) compared to white-light imaging (0.520 [range 0.409, 0.629]). However, the white-light imaging data were inconsistent and the ranges were broad; narrow-band imaging may be considerably more accurate than white-light imaging when using the class III criteria.
Narrow-band imaging diagnosed oral premalignant or cancerous lesions much more reliably than white-light imaging.
目前尚不清楚辅助诊断筛查方法是否能提高口腔癌前病变和癌症的诊断效果。
我们评估了窄带成像(NBI)用于检测口腔癌和癌前病变的诊断准确性,这些病变是根据不同的 NBI 标准定义的。
系统评价和荟萃分析。
我们检索了 PubMed、Scopus、Web of Science、Embase、Google Scholar 和 Cochrane 对照试验中心数据库,检索时间截至 2020 年 5 月。
比较了三种不同的 NBI 口腔黏膜血管变化标准:Ⅰ类:边界清楚的褐色区域,伴有厚而暗的斑点和/或蜿蜒的血管;Ⅱ类:上皮内乳头毛细血管呈 2、3 和 4 级螺旋状;Ⅲ类:上皮内乳头毛细血管呈 3 和 4 级螺旋状。使用诊断准确性研究质量评估工具(第 2 版)评估方法学质量。我们将 NBI 与传统的白光成像进行了比较。
共纳入 10 项前瞻性或回顾性研究(1374 例患者)。为了检测所有的异型增生和癌症病变,Ⅰ类标准提供了最佳的特异性和敏感性;汇总受试者工作特征曲线下面积为 0.918。为了检测高度异型增生和晚期癌症病变,Ⅲ类标准提供了适当的特异性和敏感性。汇总受试者工作特征曲线下面积为 0.905。使用Ⅲ类标准时,NBI 的特异性优于白光成像(0.941[范围 0.920~0.9572],P<.0001)。然而,白光成像的数据不一致,范围较宽;当使用Ⅲ类标准时,NBI 可能比白光成像准确得多。
NBI 诊断口腔癌前病变或癌症的准确性明显高于白光成像。