Prakash Deekshitha, Madusanka Nuwan, Bhattacharjee Subrata, Kim Cho-Hee, Park Hyeon-Gyun, Choi Heung-Kook
Department of Computer Engineering, u-AHRC, Inje University, Gimahe, Republic of Korea.
School of Computing and IT, Sri Lanka Technological Campus, Meepe, Padukka, Sri Lanka.
Curr Med Imaging. 2021;17(12):1460-1472. doi: 10.2174/1573405617666210127161812.
To prevent Alzheimer's disease (AD) from progressing to dementia, early prediction and classification of AD are important and they play a crucial role in medical image analysis.
In this study, we employed a transfer learning technique to classify magnetic resonance (MR) images using a pre-trained convolutional neural network (CNN).
To address the early diagnosis of AD, we employed a computer-assisted technique, specifically the deep learning (DL) model, to detect AD.
In particular, we classified Alzheimer's disease (AD), mild cognitive impairment (MCI), and normal control (NC) subjects using whole slide two-dimensional (2D) images. To illustrate this approach, we made use of state-of-the-art CNN base models, i.e., the residual networks Res- Net-101, ResNet-50, and ResNet-18, and compared their effectiveness in identifying AD. To evaluate this approach, an AD Neuroimaging Initiative (ADNI) dataset was utilized. We also showed uniqueness by using MR images selected only from the central slice containing left and right hippocampus regions to evaluate the models.
All three models used randomly split data in the ratio of 70:30 for training and testing. Among the three, ResNet-101 showed 98.37% accuracy, better than the other two ResNet models, and performed well in multiclass classification. The promising results emphasize the benefit of using transfer learning, specifically when the dataset is low.
From this study, we know that transfer learning helps to overcome DL problems mainly when the data available is insufficient to train a model from scratch. This approach is highly advantageous in medical image analysis to diagnose diseases like AD.
为防止阿尔茨海默病(AD)发展为痴呆症,AD的早期预测和分类至关重要,它们在医学图像分析中起着关键作用。
在本研究中,我们采用迁移学习技术,使用预训练的卷积神经网络(CNN)对磁共振(MR)图像进行分类。
为解决AD的早期诊断问题,我们采用了一种计算机辅助技术,即深度学习(DL)模型,来检测AD。
具体而言,我们使用全切片二维(2D)图像对阿尔茨海默病(AD)、轻度认知障碍(MCI)和正常对照(NC)受试者进行分类。为说明这种方法,我们使用了最先进的CNN基础模型,即残差网络Res-Net-101、ResNet-50和ResNet-18,并比较了它们在识别AD方面的有效性。为评估这种方法,我们使用了阿尔茨海默病神经影像倡议(ADNI)数据集。我们还通过仅使用从包含左右海马区的中央切片中选择的MR图像来评估模型,展示了其独特性。
所有三个模型都以70:30的比例随机分割数据用于训练和测试。在这三个模型中,ResNet-101的准确率为98.37%,优于其他两个ResNet模型,并且在多类分类中表现良好。这些有前景的结果强调了使用迁移学习的好处,特别是在数据集较少时。
从本研究中我们知道,迁移学习有助于克服深度学习的问题,主要是在可用数据不足以从头开始训练模型时。这种方法在医学图像分析中诊断AD等疾病方面具有高度优势。