Suppr超能文献

一种基于集成的用于阿尔茨海默病分类的3D残差网络。

An ensemble-based 3D residual network for the classification of Alzheimer's disease.

作者信息

Yang Xiaoli, Zhou Jiayi, Wang Chenchen, Li Xiao, Wang Jiawen, Duan Angchao, Du Nuan

机构信息

School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China.

School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.

出版信息

PLoS One. 2025 Jun 11;20(6):e0324520. doi: 10.1371/journal.pone.0324520. eCollection 2025.

Abstract

Alzheimer's disease (AD) is a common type of dementia, with mild cognitive impairment (MCI) being a key precursor. Early MCI diagnosis is crucial for slowing AD progression, but distinguishing MCI from normal controls (NC) is challenging due to subtle imaging differences. Furthermore, differentiating early MCI (EMCI) from late MCI (LMCI) is also important for interventions. This study proposes a deep learning-based approach using a weighted probability-based ensemble method to integrate results from three-dimensional residual networks (3D ResNet). (1) This study employs 3D ResNet-18, 3D ResNet-34, and 3D ResNet-50 architectures with the Convolutional Block Attention Module (CBAM). The attention mechanism enhances performance by helping the model focus on pertinent information. Data augmentation techniques are applied to address limited data and improve accuracy. (2) To overcome the limitation of the individual convolutional neural network (CNN), an ensemble learning method is adopted. The method assigns weights to each 3D CNN model based on prediction accuracy and integrates them to obtain the final result. Our method achieves accuracy of 94.87%, 92.31%, 95.49%, and 95.97% for MCI vs. NC, MCI vs. AD, EMCI vs. LMCI, and NC vs. EMCI vs. LMCI vs. AD, respectively. The results demonstrate the effectiveness of our method for AD diagnosis.

摘要

阿尔茨海默病(AD)是一种常见的痴呆类型,轻度认知障碍(MCI)是其关键前驱症状。早期MCI诊断对于减缓AD进展至关重要,但由于影像学差异细微,将MCI与正常对照(NC)区分开来具有挑战性。此外,区分早期MCI(EMCI)和晚期MCI(LMCI)对于干预措施也很重要。本研究提出了一种基于深度学习的方法,使用基于加权概率的集成方法来整合三维残差网络(3D ResNet)的结果。(1)本研究采用带有卷积块注意力模块(CBAM)的3D ResNet - 18、3D ResNet - 34和3D ResNet - 50架构。注意力机制通过帮助模型聚焦相关信息来提高性能。应用数据增强技术来解决数据有限的问题并提高准确性。(2)为克服单个卷积神经网络(CNN)的局限性,采用了集成学习方法。该方法根据预测准确性为每个3D CNN模型分配权重,并将它们整合以获得最终结果。我们的方法在MCI与NC、MCI与AD、EMCI与LMCI以及NC与EMCI与LMCI与AD的对比中,准确率分别达到了94.87%、92.31%、95.49%和95.97%。结果证明了我们的方法在AD诊断中的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2342/12157004/410b6563c959/pone.0324520.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验