Suppr超能文献

德国冠状病毒 SARS-CoV-2 病例数据中繁殖数的发展及其对政治措施的影响。

Development of the reproduction number from coronavirus SARS-CoV-2 case data in Germany and implications for political measures.

机构信息

Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Rebenring 56, Braunschweig, 38106, Germany.

Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, Braunschweig, 38124, Germany.

出版信息

BMC Med. 2021 Jan 28;19(1):32. doi: 10.1186/s12916-020-01884-4.

Abstract

BACKGROUND

SARS-CoV-2 has induced a worldwide pandemic and subsequent non-pharmaceutical interventions (NPIs) to control the spread of the virus. As in many countries, the SARS-CoV-2 pandemic in Germany has led to a consecutive roll-out of different NPIs. As these NPIs have (largely unknown) adverse effects, targeting them precisely and monitoring their effectiveness are essential. We developed a compartmental infection dynamics model with specific features of SARS-CoV-2 that allows daily estimation of a time-varying reproduction number and published this information openly since the beginning of April 2020. Here, we present the transmission dynamics in Germany over time to understand the effect of NPIs and allow adaptive forecasts of the epidemic progression.

METHODS

We used a data-driven estimation of the evolution of the reproduction number for viral spreading in Germany as well as in all its federal states using our model. Using parameter estimates from literature and, alternatively, with parameters derived from a fit to the initial phase of COVID-19 spread in different regions of Italy, the model was optimized to fit data from the Robert Koch Institute.

RESULTS

The time-varying reproduction number (R) in Germany decreased to <1 in early April 2020, 2-3 weeks after the implementation of NPIs. Partial release of NPIs both nationally and on federal state level correlated with moderate increases in R until August 2020. Implications of state-specific R on other states and on national level are characterized. Retrospective evaluation of the model shows excellent agreement with the data and usage of inpatient facilities well within the healthcare limit. While short-term predictions may work for a few weeks, long-term projections are complicated by unpredictable structural changes.

CONCLUSIONS

The estimated fraction of immunized population by August 2020 warns of a renewed outbreak upon release of measures. A low detection rate prolongs the delay reaching a low case incidence number upon release, showing the importance of an effective testing-quarantine strategy. We show that real-time monitoring of transmission dynamics is important to evaluate the extent of the outbreak, short-term projections for the burden on the healthcare system, and their response to policy changes.

摘要

背景

SARS-CoV-2 引发了全球大流行,并随后采取了非药物干预(NPIs)措施来控制病毒的传播。与许多国家一样,德国的 SARS-CoV-2 大流行导致了连续推出不同的 NPIs。由于这些 NPIs 具有(在很大程度上未知的)不良影响,因此精确针对它们并监测其效果至关重要。我们开发了一种具有 SARS-CoV-2 特定特征的隔室感染动力学模型,该模型可以每天估算时变繁殖数,并自 2020 年 4 月初以来公开发布这些信息。在这里,我们介绍了德国随时间推移的传播动态,以了解 NPIs 的影响,并允许对疫情进展进行适应性预测。

方法

我们使用数据驱动的方法来估算德国以及其所有联邦州的病毒传播繁殖数的演变,使用我们的模型。使用来自文献的参数估计值,或者使用从意大利不同地区 COVID-19 传播初始阶段拟合得到的参数,对模型进行优化以拟合罗伯特·科赫研究所的数据。

结果

德国的时变繁殖数(R)在 2020 年 4 月初下降到<1,这是在实施 NPIs 后 2-3 周。全国和州一级部分取消 NPIs 与 2020 年 8 月之前 R 的适度增加有关。描述了特定州的 R 对其他州和全国的影响。对模型的回顾性评估表明,它与数据具有极好的一致性,并且在医疗保健范围内很好地利用了住院设施。虽然短期预测可能在几周内有效,但长期预测因不可预测的结构变化而变得复杂。

结论

到 2020 年 8 月,估计的免疫人口比例警告说,一旦取消措施,就会爆发新的疫情。低检出率延长了在放宽限制后达到低病例发生率的延迟,这表明有效的检测-隔离策略的重要性。我们表明,实时监测传播动态对于评估疫情程度、对医疗保健系统的短期负担进行预测以及对政策变化做出响应非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1d5/7842041/0e908a0af038/12916_2020_1884_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验