Department of Radiology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.
Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.
Sci Rep. 2021 Jan 27;11(1):2325. doi: 10.1038/s41598-021-81883-4.
To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images (FLAIR). 90 (KORA) and 34 (SHIP) potential determinants of WMH including measures of diabetes, blood-pressure, medication-intake, sociodemographics, life-style factors, somatic/depressive-symptoms and sleep were collected. Elastic net regression was used to identify relevant predictor covariates associated with WMH volume. The ten most frequently selected variables in KORA were subsequently examined for robustness in SHIP. The final KORA sample consisted of 370 participants (58% male; age 55.7 ± 9.1 years), the SHIP sample comprised 854 participants (38% male; age 53.9 ± 9.3 years). The most often selected and highly replicable parameters associated with WMH volume were in descending order age, hypertension, components of the social environment (i.e. widowed, living alone) and prediabetes. A systematic machine-learning based analysis of two independent, population-based cohorts showed, that besides age and hypertension, prediabetes and components of the social environment might play important roles in the development of WMH. Our results enable personal risk assessment for the development of WMH and inform prevention strategies tailored to the individual patient.
为了确定与脑白质高信号(WMH)相关的最重要参数,考虑到潜在的共线性,我们使用了一种数据驱动的机器学习方法。我们分析了两个独立的队列(KORA 和 SHIP)。WMH 体积由 cMRI 图像(FLAIR)得出。90 个(KORA)和 34 个(SHIP)可能影响 WMH 的决定因素,包括糖尿病、血压、药物摄入、社会人口统计学、生活方式因素、躯体/抑郁症状和睡眠的测量值。弹性网络回归用于识别与 WMH 体积相关的相关预测协变量。随后,在 SHIP 中检查了 KORA 中十个最常选择的变量的稳健性。最终的 KORA 样本包括 370 名参与者(58%为男性;年龄 55.7±9.1 岁),SHIP 样本包括 854 名参与者(38%为男性;年龄 53.9±9.3 岁)。与 WMH 体积最相关且高度可重复的参数按降序排列依次为年龄、高血压、社会环境的组成部分(如丧偶、独居)和前驱糖尿病。对两个独立的基于人群的队列进行的基于系统的机器学习分析表明,除了年龄和高血压外,前驱糖尿病和社会环境的组成部分可能在 WMH 的发展中起重要作用。我们的研究结果可以对 WMH 的发展进行个人风险评估,并为针对个体患者的预防策略提供信息。