Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia.
Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia.
Environ Sci Pollut Res Int. 2021 Jun;28(21):27457-27473. doi: 10.1007/s11356-020-12251-4. Epub 2021 Jan 28.
The conversion of carbon-rich biomass into valuable material is an environmental-friendly approach for its reutilization. In this study, coconut shell-derived biochar, graphitic carbon nitride (g-CN), g-CN/biochar, titanium dioxide (TiO)/biochar, zinc oxide (ZnO)/biochar, and ferric oxide (FeO)/biochar were synthesized and characterized by using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), surface area analysis, UV-Vis diffuse reflectance spectroscopy (DRS), and zeta potential analysis. The g-CN or metal oxide particles were found to be well-distributed on the coconut shell-derived biochar with the improvement in thermal stability and enlargement of specific surface area. A great reduction in band gap energy was observed in the composite materials after incorporating with the biochar. Among different biochar composites, g-CN/biochar was found to have the highest photocatalytic activity. The interactive effect of parameters such as catalyst dosage, peroxymonosulfate (PMS) oxidant dosage, and solution pH on the photocatalytic degradation of methyl orange was investigated using the response surface methodology (RSM). The highest photocatalytic degradation efficiency (96.63%) was achieved at catalyst dosage of 0.75 g/L, oxidant dosage of 0.6 mM, and solution pH 3 after 30 min.
将富含碳的生物质转化为有价值的材料是一种环保的再利用方法。在这项研究中,合成并通过扫描电子显微镜结合能谱分析(SEM-EDX)、X 射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、热重分析(TGA)、比表面积分析、紫外可见漫反射光谱(DRS)和zeta 电位分析对椰壳衍生生物炭、石墨相氮化碳(g-CN)、g-CN/生物炭、二氧化钛(TiO)/生物炭、氧化锌(ZnO)/生物炭和氧化铁(FeO)/生物炭进行了表征。结果发现,g-CN 或金属氧化物颗粒均匀分布在椰壳衍生生物炭上,同时提高了热稳定性并增大了比表面积。在复合材料中加入生物炭后,带隙能显著降低。在不同的生物炭复合材料中,g-CN/生物炭表现出最高的光催化活性。采用响应面法(RSM)研究了催化剂用量、过一硫酸盐(PMS)氧化剂用量和溶液 pH 等参数对甲基橙光催化降解的交互作用。在 30 分钟后,当催化剂用量为 0.75 g/L、氧化剂用量为 0.6 mM 和溶液 pH 为 3 时,获得了最高的光催化降解效率(96.63%)。