Olawale Salami Hammed, Alahmad Waleed, Darwish Ibrahim A, Ashfaq Mohammad, Darling Ryhan J, Kraiya Charoenkwan
Department of Chemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand.
RSC Adv. 2025 Aug 26;15(37):30123-30134. doi: 10.1039/d5ra03405a. eCollection 2025 Aug 22.
The present study focuses on the synthesis of coconut shell-derived biochar (BC), molybdenum disulfide (MoS), and poly(acrylic acid) (PAA) (BC/MoS/PAA) composite. The composite was synthesized a simple hydrothermal method. The structural and morphological features of the resulting composite were thoroughly characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Brunauer-Emmett-Teller (BET) surface analysis, and Raman spectroscopy. These analyses confirmed the successful formation and integration of the composite components. Adsorption isotherm studies revealed that Cd(ii) and Pb(ii) ions uptake by the BC/MoS/PAA composite adhered to the Langmuir model, indicating monolayer adsorption onto a homogeneous surface. The maximum adsorption capacities for Cd(ii) and Pb(ii) were determined to be 8.23 mg g and 26.47 mg g, respectively. Kinetic investigations indicated that the adsorption process followed a pseudo-second-order model, suggesting that chemisorption was the dominant mechanism. Moreover, the composite exhibited excellent reusability and selectivity towards Cd(ii) and Pb(ii) ions. Oxygen-containing functional groups, sulfide ions (S), and π-π interactions within the composite imply that electrostatic attraction, surface complexation, and cation-π interactions were the primary forces governing the adsorption process. These findings highlight the BC/MoS/PAA composite's significant potential for effectively removing Cd(ii) and Pb(ii) from contaminated wastewater.
本研究聚焦于椰壳衍生生物炭(BC)、二硫化钼(MoS)和聚丙烯酸(PAA)(BC/MoS/PAA)复合材料的合成。该复合材料采用简单的水热法合成。使用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、带能谱的扫描电子显微镜(SEM-EDS)、布鲁诺尔-埃米特-泰勒(BET)表面分析和拉曼光谱对所得复合材料的结构和形态特征进行了全面表征。这些分析证实了复合材料各组分的成功形成和整合。吸附等温线研究表明,BC/MoS/PAA复合材料对Cd(ii)和Pb(ii)离子的吸附符合朗缪尔模型,表明在均匀表面上的单层吸附。Cd(ii)和Pb(ii)的最大吸附容量分别确定为8.23 mg/g和26.47 mg/g。动力学研究表明,吸附过程遵循准二级模型,表明化学吸附是主要机制。此外,该复合材料对Cd(ii)和Pb(ii)离子表现出优异的可重复使用性和选择性。复合材料中的含氧官能团、硫离子(S)和π-π相互作用意味着静电吸引、表面络合和阳离子-π相互作用是控制吸附过程的主要力量。这些发现突出了BC/MoS/PAA复合材料在有效去除污染废水中的Cd(ii)和Pb(ii)方面的巨大潜力。