Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America.
Institute for Systems Biology, Seattle, Washington, United States of America.
PLoS Comput Biol. 2021 Jan 28;17(1):e1008208. doi: 10.1371/journal.pcbi.1008208. eCollection 2021 Jan.
Mathematical models of metabolic networks utilize simulation to study system-level mechanisms and functions. Various approaches have been used to model the steady state behavior of metabolic networks using genome-scale reconstructions, but formulating dynamic models from such reconstructions continues to be a key challenge. Here, we present the Mass Action Stoichiometric Simulation Python (MASSpy) package, an open-source computational framework for dynamic modeling of metabolism. MASSpy utilizes mass action kinetics and detailed chemical mechanisms to build dynamic models of complex biological processes. MASSpy adds dynamic modeling tools to the COnstraint-Based Reconstruction and Analysis Python (COBRApy) package to provide an unified framework for constraint-based and kinetic modeling of metabolic networks. MASSpy supports high-performance dynamic simulation through its implementation of libRoadRunner: the Systems Biology Markup Language (SBML) simulation engine. Three examples are provided to demonstrate how to use MASSpy: (1) a validation of the MASSpy modeling tool through dynamic simulation of detailed mechanisms of enzyme regulation; (2) a feature demonstration using a workflow for generating ensemble of kinetic models using Monte Carlo sampling to approximate missing numerical values of parameters and to quantify biological uncertainty, and (3) a case study in which MASSpy is utilized to overcome issues that arise when integrating experimental data with the computation of functional states of detailed biological mechanisms. MASSpy represents a powerful tool to address challenges that arise in dynamic modeling of metabolic networks, both at small and large scales.
代谢网络的数学模型利用模拟来研究系统级的机制和功能。已经使用了各种方法来使用基因组规模的重建来模拟代谢网络的稳态行为,但从这些重建中构建动态模型仍然是一个关键挑战。在这里,我们介绍了 Mass Action Stoichiometric Simulation Python (MASSpy) 包,这是一个用于代谢动态建模的开源计算框架。MASSpy 利用质量作用动力学和详细的化学机制来构建复杂生物过程的动态模型。MASSpy 为 COnstraint-Based Reconstruction and Analysis Python (COBRApy) 包添加了动态建模工具,为代谢网络的约束和动力学建模提供了一个统一的框架。MASSpy 通过其对 libRoadRunner 的实现支持高性能动态模拟:系统生物学标记语言 (SBML) 模拟引擎。提供了三个示例来说明如何使用 MASSpy:(1)通过酶调节详细机制的动态模拟验证 MASSpy 建模工具;(2)使用使用蒙特卡罗抽样生成参数缺失数值的近似值和量化生物不确定性的集合动力学模型的工作流程进行功能演示,以及(3)利用 MASSpy 克服将实验数据与详细生物机制的功能状态计算集成时出现的问题的案例研究。MASSpy 是解决代谢网络动态建模中出现的问题的强大工具,无论是在小尺度还是大尺度上。