Suppr超能文献

从序贯记录中预测大型神经元群体的同步放电。

Predicting synchronous firing of large neural populations from sequential recordings.

机构信息

Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.

Current affiliation: Department of Applied Physics, Stanford University, Stanford, California, United States of America.

出版信息

PLoS Comput Biol. 2021 Jan 28;17(1):e1008501. doi: 10.1371/journal.pcbi.1008501. eCollection 2021 Jan.

Abstract

A major goal in neuroscience is to understand how populations of neurons code for stimuli or actions. While the number of neurons that can be recorded simultaneously is increasing at a fast pace, in most cases these recordings cannot access a complete population: some neurons that carry relevant information remain unrecorded. In particular, it is hard to simultaneously record all the neurons of the same type in a given area. Recent progress have made possible to profile each recorded neuron in a given area thanks to genetic and physiological tools, and to pool together recordings from neurons of the same type across different experimental sessions. However, it is unclear how to infer the activity of a full population of neurons of the same type from these sequential recordings. Neural networks exhibit collective behaviour, e.g. noise correlations and synchronous activity, that are not directly captured by a conditionally-independent model that would just put together the spike trains from sequential recordings. Here we show that we can infer the activity of a full population of retina ganglion cells from sequential recordings, using a novel method based on copula distributions and maximum entropy modeling. From just the spiking response of each ganglion cell to a repeated stimulus, and a few pairwise recordings, we could predict the noise correlations using copulas, and then the full activity of a large population of ganglion cells of the same type using maximum entropy modeling. Remarkably, we could generalize to predict the population responses to different stimuli with similar light conditions and even to different experiments. We could therefore use our method to construct a very large population merging cells' responses from different experiments. We predicted that synchronous activity in ganglion cell populations saturates only for patches larger than 1.5mm in radius, beyond what is today experimentally accessible.

摘要

神经科学的一个主要目标是了解神经元群体如何对刺激或动作进行编码。虽然可以同时记录的神经元数量正在快速增加,但在大多数情况下,这些记录无法访问完整的神经元群体:一些携带相关信息的神经元仍未被记录。特别是,很难同时记录给定区域中所有相同类型的神经元。由于遗传和生理工具的进步,现在可以对给定区域中的每个记录神经元进行分析,并将来自不同实验会话中相同类型的神经元的记录汇总在一起。然而,尚不清楚如何从这些顺序记录中推断出相同类型的完整神经元群体的活动。神经网络表现出集体行为,例如噪声相关性和同步活动,这些行为无法通过仅将顺序记录中的尖峰列车组合在一起的条件独立模型直接捕获。在这里,我们展示了我们可以使用基于 Copula 分布和最大熵建模的新方法,从顺序记录中推断出整个视网膜神经节细胞群体的活动。仅从每个神经节细胞对重复刺激的尖峰反应和少数几个成对记录中,我们就可以使用 Copula 来预测噪声相关性,然后使用最大熵建模来预测相同类型的大量神经节细胞的完整活动。值得注意的是,我们可以推广到使用相似光照条件的不同刺激下预测群体反应,甚至可以推广到不同的实验。因此,我们可以使用我们的方法来构建一个非常大的群体,将来自不同实验的细胞反应合并在一起。我们预测,只有半径大于 1.5mm 的斑块,才能使神经节细胞群体中的同步活动饱和,这超出了当前实验可达到的范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/296a/7891787/6836d5e95f59/pcbi.1008501.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验