Suppr超能文献

使用非参数copulas进行信息估计。

Information estimation using nonparametric copulas.

作者信息

Safaai Houman, Onken Arno, Harvey Christopher D, Panzeri Stefano

机构信息

Department of Neurobiology, Harvard Medical School, Boston, MA.

Istituto Italiano di Tecnologia, Rovereto, Italy.

出版信息

Phys Rev E. 2018 Nov;98(5). doi: 10.1103/PhysRevE.98.053302. Epub 2018 Nov 5.

Abstract

Estimation of mutual information between random variables has become crucial in a range of fields, from physics to neuroscience to finance. Estimating information accurately over a wide range of conditions relies on the development of flexible methods to describe statistical dependencies among variables, without imposing potentially invalid assumptions on the data. Such methods are needed in cases that lack prior knowledge of their statistical properties and that have limited sample numbers. Here we propose a powerful and generally applicable information estimator based on non-parametric copulas. This estimator, called the non-parametric copula-based estimator (NPC), is tailored to take into account detailed stochastic relationships in the data independently of the data's marginal distributions. The NPC estimator can be used both for continuous and discrete numerical variables and thus provides a single framework for the mutual information estimation of both continuous and discrete data. By extensive validation on artificial samples drawn from various statistical distributions, we found that the NPC estimator compares well against commonly used alternatives. Unlike methods not based on copulas, it allows an estimation of information that is robust to changes of the details of the marginal distributions. Unlike parametric copula methods, it remains accurate regardless of the precise form of the interactions between the variables. In addition, the NPC estimator had accurate information estimates even at low sample numbers, in comparison to alternative estimators. The NPC estimator therefore provides a good balance between general applicability to arbitrarily shaped statistical dependencies in the data and shows accurate and robust performance when working with small sample sizes. We anticipate that the non-parametric copula information estimator will be a powerful tool in estimating mutual information between a broad range of data.

摘要

估计随机变量之间的互信息在从物理学到神经科学再到金融等一系列领域中已变得至关重要。在广泛的条件下准确估计信息依赖于开发灵活的方法来描述变量之间的统计依赖性,而不对数据施加可能无效的假设。在缺乏关于其统计特性的先验知识且样本数量有限的情况下,需要这样的方法。在此,我们提出一种基于非参数copula的强大且普遍适用的信息估计器。这种估计器称为基于非参数copula的估计器(NPC),它经过定制,能够独立于数据的边际分布来考虑数据中详细的随机关系。NPC估计器可用于连续和离散数值变量,从而为连续和离散数据的互信息估计提供了一个单一框架。通过对从各种统计分布中抽取的人工样本进行广泛验证,我们发现NPC估计器与常用的替代方法相比表现良好。与不基于copula的方法不同,它允许估计对边际分布细节变化具有鲁棒性的信息。与参数copula方法不同,无论变量之间相互作用的精确形式如何,它都能保持准确。此外,与替代估计器相比,即使在样本数量较少时,NPC估计器也能给出准确的信息估计。因此,NPC估计器在对数据中任意形状的统计依赖性具有普遍适用性与在处理小样本量时表现出准确且鲁棒的性能之间实现了良好的平衡。我们预计,非参数copula信息估计器将成为估计广泛数据之间互信息的有力工具。

相似文献

1
Information estimation using nonparametric copulas.
Phys Rev E. 2018 Nov;98(5). doi: 10.1103/PhysRevE.98.053302. Epub 2018 Nov 5.
3
A more reliable species richness estimator based on the Gamma-Poisson model.
PeerJ. 2023 Jan 6;11:e14540. doi: 10.7717/peerj.14540. eCollection 2023.
5
Parametric Copula-GP model for analyzing multidimensional neuronal and behavioral relationships.
PLoS Comput Biol. 2022 Jan 28;18(1):e1009799. doi: 10.1371/journal.pcbi.1009799. eCollection 2022 Jan.
6
Bayesian bivariate survival analysis using the power variance function copula.
Lifetime Data Anal. 2018 Apr;24(2):355-383. doi: 10.1007/s10985-017-9396-1. Epub 2017 May 23.
7
Analyzing short-term noise dependencies of spike-counts in macaque prefrontal cortex using copulas and the flashlight transformation.
PLoS Comput Biol. 2009 Nov;5(11):e1000577. doi: 10.1371/journal.pcbi.1000577. Epub 2009 Nov 26.
8
Estimating Multivariate Discrete Distributions Using Bernstein Copulas.
Entropy (Basel). 2018 Mar 14;20(3):194. doi: 10.3390/e20030194.
10
Mixed vine copula flows for flexible modeling of neural dependencies.
Front Neurosci. 2022 Sep 23;16:910122. doi: 10.3389/fnins.2022.910122. eCollection 2022.

引用本文的文献

1
MINT: A toolbox for the analysis of multivariate neural information coding and transmission.
PLoS Comput Biol. 2025 Apr 15;21(4):e1012934. doi: 10.1371/journal.pcbi.1012934. eCollection 2025 Apr.
2
Poverty improvement policies and household income: Evidence from China.
Heliyon. 2023 Oct 23;9(11):e21442. doi: 10.1016/j.heliyon.2023.e21442. eCollection 2023 Nov.
4
Ranking the information content of distance measures.
PNAS Nexus. 2022 Apr 14;1(2):pgac039. doi: 10.1093/pnasnexus/pgac039. eCollection 2022 May.
5
Computational methods to study information processing in neural circuits.
Comput Struct Biotechnol J. 2023 Jan 11;21:910-922. doi: 10.1016/j.csbj.2023.01.009. eCollection 2023.
6
Spiking burstiness and working memory in the human medial temporal lobe.
Cereb Cortex Commun. 2022 Oct 19;3(4):tgac039. doi: 10.1093/texcom/tgac039. eCollection 2022.
7
The structures and functions of correlations in neural population codes.
Nat Rev Neurosci. 2022 Sep;23(9):551-567. doi: 10.1038/s41583-022-00606-4. Epub 2022 Jun 22.
9
Parametric Copula-GP model for analyzing multidimensional neuronal and behavioral relationships.
PLoS Comput Biol. 2022 Jan 28;18(1):e1009799. doi: 10.1371/journal.pcbi.1009799. eCollection 2022 Jan.
10
Inferring a Property of a Large System from a Small Number of Samples.
Entropy (Basel). 2022 Jan 14;24(1):125. doi: 10.3390/e24010125.

本文引用的文献

1
Inference of financial networks using the normalised mutual information rate.
PLoS One. 2018 Feb 8;13(2):e0192160. doi: 10.1371/journal.pone.0192160. eCollection 2018.
2
Distinct timescales of population coding across cortex.
Nature. 2017 Aug 3;548(7665):92-96. doi: 10.1038/nature23020. Epub 2017 Jul 19.
3
Breakdown of local information processing may underlie isoflurane anesthesia effects.
PLoS Comput Biol. 2017 Jun 1;13(6):e1005511. doi: 10.1371/journal.pcbi.1005511. eCollection 2017 Jun.
4
A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula.
Hum Brain Mapp. 2017 Mar;38(3):1541-1573. doi: 10.1002/hbm.23471. Epub 2016 Nov 17.
5
Structures of Neural Correlation and How They Favor Coding.
Neuron. 2016 Jan 20;89(2):409-22. doi: 10.1016/j.neuron.2015.12.037.
6
Complementary contributions of spike timing and spike rate to perceptual decisions in rat S1 and S2 cortex.
Curr Biol. 2015 Feb 2;25(3):357-363. doi: 10.1016/j.cub.2014.11.065. Epub 2015 Jan 22.
7
A new estimation approach for combining epidemiological data from multiple sources.
J Am Stat Assoc. 2014 Jan 1;109(505):11-23. doi: 10.1080/01621459.2013.870904.
8
Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns.
Neuron. 2009 Feb 26;61(4):597-608. doi: 10.1016/j.neuron.2009.01.008.
9
Extracting information from neuronal populations: information theory and decoding approaches.
Nat Rev Neurosci. 2009 Mar;10(3):173-85. doi: 10.1038/nrn2578.
10
Correcting for the sampling bias problem in spike train information measures.
J Neurophysiol. 2007 Sep;98(3):1064-72. doi: 10.1152/jn.00559.2007. Epub 2007 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验