一项针对成人癌症患者及其照顾者的需求评估工具(NAT-C)在初级保健中的应用的整群随机试验:一项可行性研究。

A cluster randomised trial of a Needs Assessment Tool for adult Cancer patients and their carers (NAT-C) in primary care: A feasibility study.

机构信息

Wolfson Palliative Care Research Centre, University of Hull, Hull, United Kingdom.

Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, United Kingdom.

出版信息

PLoS One. 2021 Jan 28;16(1):e0245647. doi: 10.1371/journal.pone.0245647. eCollection 2021.

Abstract

BACKGROUND

People with cancer often have unidentified symptoms and social care needs. The Needs Assessment Tool-Cancer (NAT-C) is a validated, structured method of assessing patient/carer concerns and prompting action, to address unmet need.

AIMS

Assess feasibility and acceptability of a definitive two-armed cluster randomised trial of NAT-C in primary care by evaluating: recruitment of GP practices, patients and carers; most effective approach of ensuring NAT-C appointments, acceptability of study measures and follow-up.

METHODS

Non-blinded, feasibility study in four General Practices, with cluster randomisation to method of NAT-C appointment delivery, and process evaluation. Adults with active cancer were invited to participate with or without carer. Practices cluster randomised (1:1) to Arm I: promotion and use of NAT-C with a NAT-C trained clinician or Arm II: clinician of choice irrespective of training status. Participants completed study questionnaires at: baseline, 1, 3 and 6 months. Patients booked a 20 minute needs-assessment appointment post-baseline. Patients, carers and GP practice staff views regarding the study sought through interviews/focus groups. Quantitative data were analysed descriptively. Qualitative data were analysed thematically, informed by Normalisation Process Theory. Progression to a definitive trial was assessed against feasibility outcomes, relating to: recruitment rate, uptake and delivery of the NAT-C, data collection and quality.

RESULTS

Five GP practices approached, four recruited and trained to use the NAT-C. Forty-seven participants and 17 carers recruited. At baseline, 34/47 (72%) participants reported at least one moderate-severe unmet need, confirming study rationale. 32/47 (68%) participants received a NAT-C-guided consultation, 19 of which on Arm I. Study attrition at one month (n = 44 (94%), n = 16 (94%)), three months (n = 38 (81%), n = 14 (82%)) and six months (n = 32 (68%), n = 10 (59%)). Fifteen patient interviews conducted across the whole study and one focus group at each GP practice. Participants supported a definitive study and found measures acceptable.

CONCLUSION

The feasibility trial indicated that recruitment rate, intervention uptake and data collection were appropriate, with refinements, for a definitive multi-centre cluster randomised controlled trial. Feasibility outcomes informed the design of a 2-armed cluster randomised controlled trial to test the effectiveness and cost-effectiveness of the NAT-C compared with usual care.

摘要

背景

癌症患者常有未确诊的症状和社会护理需求。需求评估工具-癌症(NAT-C)是一种经过验证的结构化方法,用于评估患者/照顾者的关注点并提示采取行动,以满足未满足的需求。

目的

通过评估以下方面,评估在初级保健中进行 NAT-C 的确定性两臂聚类随机试验的可行性和可接受性:全科医生实践、患者和照顾者的招募;确保 NAT-C 预约最有效的方法、研究措施和随访的可接受性。

方法

在 4 家普通诊所进行非盲、可行性研究,采用聚类随机分组,比较 NAT-C 预约交付的方法,并进行过程评估。邀请患有活动性癌症的成年人及其照顾者参加,无论是否有照顾者。实践聚类随机(1:1)至 Arm I:使用经过 NAT-C 培训的临床医生推广和使用 NAT-C 或 Arm II:临床医生选择,无论培训状况如何。参与者在基线、1、3 和 6 个月时完成研究问卷。患者在基线后预约 20 分钟的需求评估预约。通过访谈/焦点小组了解患者、照顾者和全科医生实践工作人员对研究的看法。定量数据进行描述性分析。定性数据根据正常化过程理论进行主题分析。根据可行性结果评估向确定性试验的进展,涉及招募率、NAT-C 的接受和提供、数据收集和质量。

结果

接触了 5 家全科医生实践,其中 4 家接受了培训并使用了 NAT-C。招募了 47 名参与者和 17 名照顾者。在基线时,34/47(72%)名参与者报告至少有一项中度至重度未满足的需求,证实了研究的合理性。32/47(68%)名参与者接受了 NAT-C 指导的咨询,其中 19 名在 Arm I 中。一个月时的研究失访率(n = 44(94%),n = 16(94%))、三个月(n = 38(81%),n = 14(82%))和六个月(n = 32(68%),n = 10(59%))。整个研究共进行了 15 次患者访谈和每个 GP 实践的一次焦点小组。参与者支持确定性研究并认为措施可以接受。

结论

可行性试验表明,招募率、干预接受率和数据收集率适当,需要进一步改进,以进行确定性多中心聚类随机对照试验。可行性结果为设计 2 臂聚类随机对照试验提供了信息,以测试与常规护理相比,NAT-C 的有效性和成本效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebdd/7842977/bd798f64666f/pone.0245647.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索