Suppr超能文献

通过等效电路分析阐明电流在等离子体基因转染中的重要性。

Clarification of electrical current importance in plasma gene transfection by equivalent circuit analysis.

机构信息

Department of Electrical and Electronic Engineering, Ehime University, Matsuyama, Japan.

Pearl Kogyo Co., Ltd., Suminoe, Osaka, Japan.

出版信息

PLoS One. 2021 Jan 28;16(1):e0245654. doi: 10.1371/journal.pone.0245654. eCollection 2021.

Abstract

We have been developing a method of plasma gene transfection that uses microdischarge plasma (MDP) and is highly efficient, minimally invasive, and safe. Using this technique, electrical factors (such as the electrical current and electric field created through processing discharge plasma) and the chemical factors of active species and other substances focusing on radicals are supplied to the cells and then collectively work to introduce nucleic acids in the cell. In this paper, we focus on the electrical factors to identify whether the electric field or electrical current is the major factor acting on the cells. More specifically, we built a spatial distribution model that uses an electrical network to represent the buffer solution and cells separately, as a substitute for the previously reported uniform medium model (based on the finite element method), calculated the voltage and electrical current acting on cells, and examined their intensity. Although equivalent circuit models of single cells are widely used, this study was a novel attempt to build a model wherein adherent cells distributed in two dimensions were represented as a group of equivalent cell circuits and analyzed as an electrical network that included a buffer solution and a 96-well plate. Using this model, we could demonstrate the feasibility of applying equivalent circuit network analysis to calculate electrical factors using fewer components than those required for the finite element method, with regard to electrical processing systems targeting organisms. The results obtained through this equivalent circuit network analysis revealed for the first time that the distribution of voltage and current applied to a cellular membrane matched the spatial distribution of experimentally determined gene transfection efficiency and that the electrical current is the major factor contributing to introduction.

摘要

我们一直在开发一种利用微放电等离子体(MDP)的高效、微创且安全的血浆基因转染方法。该技术将电因素(如处理放电等离子体产生的电流和电场)和活性物质等化学因素聚焦于自由基,共同作用于细胞,从而将核酸导入细胞。在本文中,我们重点研究电因素,以确定电场或电流是否是作用于细胞的主要因素。更具体地说,我们建立了一个空间分布模型,该模型使用一个电路网络分别代表缓冲溶液和细胞,以替代之前报道的均匀介质模型(基于有限元方法),计算作用于细胞的电压和电流,并检查它们的强度。虽然单个细胞的等效电路模型被广泛应用,但本研究是一种新的尝试,即将二维分布的贴壁细胞表示为一组等效细胞电路,并将其分析为一个包含缓冲溶液和 96 孔板的电路网络。通过该模型,我们可以证明使用比有限元方法更少的组件应用等效电路网络分析来计算电因素的可行性,这与针对生物体的电处理系统有关。通过这种等效电路网络分析首次揭示,作用于细胞膜的电压和电流分布与实验确定的基因转染效率的空间分布相匹配,电流是导致转染的主要因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5046/7842892/d8ff25eb3b1b/pone.0245654.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验