Suppr超能文献

利用手工制作的形态学特征和深度中心注意力残差网络,通过原位杂交检测口咽癌中的人乳头瘤病毒。

Human papilloma virus detection in oropharyngeal carcinomas with in situ hybridisation using hand crafted morphological features and deep central attention residual networks.

作者信息

Fouad Shereen, Landini Gabriel, Robinson Max, Song Tzu-Hsi, Mehanna Hisham

机构信息

School of Computing and Digital Technology, Birmingham City University, Birmingham, United Kingdom.

Oral Pathology Unit, School of Dentistry, University of Birmingham, Birmingham, United Kingdom.

出版信息

Comput Med Imaging Graph. 2021 Mar;88:101853. doi: 10.1016/j.compmedimag.2021.101853. Epub 2021 Jan 22.

Abstract

Human Papilloma Virus (HPV) is a major risk factor for the development of oropharyngeal cancer. Automatic detection of HPV in digitized pathology tissues using in situ hybridisation (ISH) is a difficult task due to the variability and complexity of staining patterns as well as the presence of imaging and staining artefacts. This paper proposes an intelligent image analysis framework to determine HPV status in digitized samples of oropharyngeal cancer tissue micro-arrays (TMA). The proposed pipeline mixes handcrafted feature extraction with a deep learning for epithelial region segmentation as a preliminary step. We apply a deep central attention learning technique to segment epithelial regions and within those assess the presence of regions representing ISH products. We then extract relevant morphological measurements from those regions which are then input into a supervised learning model for the identification of HPV status. The performance of the proposed method has been evaluated on 2009 TMA images of oropharyngeal carcinoma tissues captured with a ×20 objective. The experimental results show that our technique provides around 91% classification accuracy in detecting HPV status when compared with the histopatholgist gold standard. We also tested the performance of end-to-end deep learning classification methods to assess HPV status by learning directly from the original ISH processed images, rather than from the handcrafted features extracted from the segmented images. We examined the performance of sequential convolutional neural networks (CNN) architectures including three popular image recognition networks (VGG-16, ResNet and Inception V3) in their pre-trained and trained from scratch versions, however their highest classification accuracy was inferior (78%) to the hybrid pipeline presented here.

摘要

人乳头瘤病毒(HPV)是口咽癌发生的主要危险因素。由于染色模式的变异性和复杂性以及成像和染色伪影的存在,使用原位杂交(ISH)在数字化病理组织中自动检测HPV是一项艰巨的任务。本文提出了一种智能图像分析框架,用于确定口咽癌组织微阵列(TMA)数字化样本中的HPV状态。所提出的流程将手工特征提取与深度学习相结合,作为上皮区域分割的初步步骤。我们应用深度中心注意力学习技术来分割上皮区域,并在这些区域内评估代表ISH产物的区域的存在情况。然后,我们从这些区域中提取相关的形态学测量值,将其输入到一个监督学习模型中,以识别HPV状态。所提出方法的性能已在2009张用×20物镜拍摄的口咽癌组织TMA图像上进行了评估。实验结果表明,与组织病理学家的金标准相比,我们的技术在检测HPV状态时提供了约91%的分类准确率。我们还测试了端到端深度学习分类方法的性能,该方法通过直接从原始ISH处理图像而不是从分割图像中提取的手工特征来评估HPV状态。我们研究了顺序卷积神经网络(CNN)架构的性能,包括三个流行的图像识别网络(VGG-16、ResNet和Inception V3)的预训练版本和从头开始训练的版本,然而它们的最高分类准确率(78%)低于本文提出的混合流程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验