Lu Cheng, Koyuncu Can, Corredor German, Prasanna Prateek, Leo Patrick, Wang XiangXue, Janowczyk Andrew, Bera Kaustav, Lewis James, Velcheti Vamsidhar, Madabhushi Anant
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
Department of Biomedical Informatics, Stony Brook University, New York, NY, USA.
Med Image Anal. 2021 Feb;68:101903. doi: 10.1016/j.media.2020.101903. Epub 2020 Nov 16.
Local spatial arrangement of nuclei in histopathology images of different cancer subtypes has been shown to have prognostic value. In order to capture localized nuclear architectural information, local cell cluster graph-based measurements have been proposed. However, conventional ways of cell graph construction only utilize nuclear spatial proximity, and do not differentiate between different cell types while constructing the graph. In this paper, we present feature-driven local cell cluster graph (FLocK), a new approach to constructing local cell graphs by simultaneously considering spatial proximity and attributes of the individual nuclei (e.g. shape, size, texture). In addition, we have designed a new set of quantitative graph-derived metrics to be extracted from FLocKs, in turn capturing the interplay between different proximally located clusters of nuclei. We have evaluated the efficacy of FLocK features extracted from H&E stained tissue images in two clinical applications: to classify short-term vs. long-term survival among patients of early stage non-small cell lung cancer (ES-NSCLC), and also to predict human papillomavirus (HPV) status of oropharyngeal squamous cell carcinoma (OP-SCCs). In the classification of long-term vs. short-term survival among patients of ES-NSCLC (training cohort, n = 434), the top 10 discriminative FLocK features related to the variation of FLocK size and intersected FLocK distance were identified, via Minimum Redundancy and Maximum Relevance (MRMR) selection, in 100 runs of 10-fold cross-validation, and in conjunction with a linear discriminant classifier yielded a mean AUC of 0.68 for predicting survival in the training cohort. This is better than other state-of-art histomorphometric and deep learning classifiers (cell cluster graphs (AUC = 0.62), global cell graph (AUC = 0.56), nuclear shape (AUC = 0.54), nuclear orientation (AUC = 0.61), AlexNet (AUC = 0.55), ResNet (AUC = 0.56)). The FLocK-based classifier yielded an AUC of 0.70 in an independent testing cohort (n = 150). The patients identified as "high-risk" had significantly poorer overall survival in the testing cohort, with a hazard ratio (95% confidence interval) of 2.24 (1.24-4.05), p = 0.01144). In the classification of HPV status of OP-SCC, the top three FLocK features pertaining to the portion of intersected FLocKs were used to construct a classifier, which yielded an AUC of 0.80 in the training cohort (n = 50), and an accuracy of 0.78 in an independent testing cohort (n = 35). The combination of FLocK measurements with cell cluster graphs, nuclear orientation, and nuclear shape improved the training AUC to 0.87, 0.91 and 0.85, respectively. Deep learning approaches yielded marginally better performance than the FLocK-based classifier in this application, with AUC = 0.78 for AlexNet, AUC = 0.81 for ResNet, and AUC = 0.76 for FLocK-based classifier in the testing cohort. However, the combination of two hand-crafted features: FLocK and nuclear orientation yielded a better performance (AUC = 0.84). FLocK provides a unique and quantitative way to analyze histology images of solid tumors and interrogate tumor morphology from a different aspect than existing histomorphometrics. The source code can be accessed at https://github.com/hacylu/FLocK.
不同癌症亚型的组织病理学图像中细胞核的局部空间排列已被证明具有预后价值。为了获取局部核结构信息,人们提出了基于局部细胞簇图的测量方法。然而,传统的细胞图构建方法仅利用核空间邻近性,在构建图时不区分不同细胞类型。在本文中,我们提出了特征驱动的局部细胞簇图(FLocK),这是一种通过同时考虑单个细胞核的空间邻近性和属性(如形状、大小、纹理)来构建局部细胞图的新方法。此外,我们设计了一组新的从FLocK中提取的定量图衍生指标,进而捕捉不同近端定位的细胞核簇之间的相互作用。我们评估了从苏木精和伊红(H&E)染色组织图像中提取的FLocK特征在两个临床应用中的效果:对早期非小细胞肺癌(ES-NSCLC)患者的短期与长期生存进行分类,以及预测口咽鳞状细胞癌(OP-SCC)的人乳头瘤病毒(HPV)状态。在ES-NSCLC患者(训练队列,n = 434)的长期与短期生存分类中,通过最小冗余最大相关(MRMR)选择,在100次10折交叉验证中确定了与FLocK大小变化和相交FLocK距离相关的前10个判别性FLocK特征,并结合线性判别分类器,在训练队列中预测生存的平均曲线下面积(AUC)为0.68。这优于其他现有最先进的组织形态计量学和深度学习分类器(细胞簇图(AUC = 0.62)、全局细胞图(AUC = 0.56)、核形状(AUC = 0.54)、核方向(AUC = 0.61)、AlexNet(AUC = 0.55)、ResNet(AUC = 0.56))。基于FLocK的分类器在独立测试队列(n = 150)中的AUC为0.70。在测试队列中被确定为“高风险”的患者总体生存率显著较差,风险比(95%置信区间)为2.24(1.24 - 4.05),p = 0.01144)。在OP-SCC的HPV状态分类中,使用与相交FLocK部分相关的前三个FLocK特征构建分类器,在训练队列(n = 50)中的AUC为0.80,在独立测试队列(n = 35)中的准确率为0.78。FLocK测量与细胞簇图、核方向和核形状的组合分别将训练AUC提高到0.87、0.91和0.85。在该应用中,深度学习方法的性能略优于基于FLocK的分类器,在测试队列中AlexNet的AUC = 0.78,ResNet的AUC = 0.81,基于FLocK的分类器的AUC = 0.76。然而,两种手工制作的特征:FLocK和核方向的组合产生了更好的性能(AUC = 0.84)。FLocK提供了一种独特的定量方法来分析实体瘤的组织学图像,并从与现有组织形态计量学不同的角度审视肿瘤形态。源代码可在https://github.com/hacylu/FLocK上获取。