Suppr超能文献

经组织工程构建的动脉内皮层模型,暴露于稳定的壁切应力下。

Tissue-engineered arterial intima model exposed to steady wall shear stresses.

机构信息

Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel.

Department of Obstetrics and Gynecology, Lis Maternity Hospital, Tel-Aviv Medical Center, Tel Aviv 64239, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.

出版信息

J Biomech. 2021 Mar 5;117:110236. doi: 10.1016/j.jbiomech.2021.110236. Epub 2021 Jan 16.

Abstract

The arterial intima is continuously under pulsatile wall shear stresses (WSS) imposed by the circulating blood. The knowledge of the contribution of smooth muscle cells (SMC) to the response of endothelial cell (EC) to WSS is still incomplete. We developed a co-culture model of EC on top of SMC that mimics the inner in vivo structure of the arterial intima of large arteries. The co-cultured model, as well as a monolayer model of EC, were developed in custom-designed wells that allowed for mechanobiology experiments. Both the monolayer and co-culture models were exposed to steady flow induced WSS of up to 24 dyne/cm and for lengths of 60 min. Quantification of WSS induced alterations in the cytoskeletal actin filaments (F-actin) and vascular endothelial cadherin (VE-cadherin) junctions were utilized from confocal images and flow cytometry. High confluency of both models was observed even after exposure to the high WSS. The quantitive analysis revealed larger post WSS amounts of EC F-actin polymerization in the monolayer, which may be explained by the relative help of the SMC to resist the external load of WSS. The VE-cadherin demonstrated morphological alterations in the monolayer model, but without significant changes in their content. The SMC in the co-culture maintained their contractile phenotype post high WSS which is more physiological, but not post low WSS. Generally, the results of this work demonstrate the active role of SMC in the intima performance to resist flow induced WSS.

摘要

动脉内膜不断受到循环血液施加的脉动壁切应力 (WSS) 的影响。平滑肌细胞 (SMC) 对内皮细胞 (EC) 对 WSS 反应的贡献的认识仍然不完整。我们开发了一种将 EC 共培养在 SMC 上的模型,该模型模拟了大动脉动脉内膜的体内结构。共培养模型以及单层 EC 模型都是在定制的井中开发的,这些井允许进行机械生物学实验。单层和共培养模型都暴露于高达 24 达因/厘米的稳态流诱导的 WSS 中,持续 60 分钟。从共聚焦图像和流式细胞术利用 WSS 诱导的细胞骨架肌动蛋白丝 (F-actin) 和血管内皮钙粘蛋白 (VE-cadherin) 连接变化的定量分析。即使在高 WSS 暴露后,两种模型的高细胞密度都得到了观察。定量分析显示,在单层模型中,EC F-actin 聚合在 WSS 后有更多的聚合量,这可能是由于 SMC 相对有助于抵抗 WSS 的外部负荷。在单层模型中,VE-cadherin 表现出形态学改变,但它们的含量没有明显变化。共培养中的 SMC 在高 WSS 后保持其收缩表型,这更具生理意义,但在低 WSS 后则没有。总的来说,这项工作的结果表明 SMC 在抵抗血流诱导的 WSS 方面在内膜性能中发挥积极作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验