Suppr超能文献

测量自动化辅助性能在模拟行李安检任务中的效率。

Measuring the Efficiency of Automation-Aided Performance in a Simulated Baggage Screening Task.

机构信息

1065 Flinders University, Australia.

2694 Oregon State University, USA.

出版信息

Hum Factors. 2022 Sep;64(6):945-961. doi: 10.1177/0018720820983632. Epub 2021 Jan 28.

Abstract

OBJECTIVE

The present study replicated and extended prior findings of suboptimal automation use in a signal detection task, benchmarking automation-aided performance to the predictions of several statistical models of collaborative decision making.

BACKGROUND

Though automated decision aids can assist human operators to perform complex tasks, operators often use the aids suboptimally, achieving performance lower than statistically ideal.

METHOD

Participants performed a simulated security screening task requiring them to judge whether a target (a knife) was present or absent in a series of colored X-ray images of passenger baggage. They completed the task both with and without assistance from a 93%-reliable automated decision aid that provided a binary text diagnosis. A series of three experiments varied task characteristics including the timing of the aid's judgment relative to the raw stimuli, target certainty, and target prevalence.

RESULTS AND CONCLUSION

Automation-aided performance fell closest to the predictions of the most suboptimal model under consideration, one which assumes the participant defers to the aid's diagnosis with a probability of 50%. Performance was similar across experiments.

APPLICATION

Results suggest that human operators' performance when undertaking a naturalistic search task falls far short of optimal and far lower than prior findings using an abstract signal detection task.

摘要

目的

本研究复制并扩展了先前在信号检测任务中发现的自动化使用不理想的结果,将自动化辅助性能与协作决策的几种统计模型的预测进行基准比较。

背景

尽管自动化决策辅助工具可以帮助操作人员执行复杂任务,但操作人员通常会对其进行次优使用,从而导致性能低于统计上理想的性能。

方法

参与者执行了一项模拟的安全检查任务,要求他们判断一系列彩色 X 光乘客行李图像中是否存在目标(一把刀)。他们在有和没有 93%可靠的自动化决策辅助工具的帮助下完成了任务,该工具提供了二进制文本诊断。一系列三个实验改变了任务特征,包括辅助工具判断相对于原始刺激的时间、目标确定性和目标出现率。

结果和结论

自动化辅助性能最接近所考虑的最次优模型的预测,该模型假设参与者以 50%的概率服从辅助工具的诊断。在各个实验中表现相似。

应用

结果表明,人类操作员在执行自然搜索任务时的表现远低于最优水平,也远低于使用抽象信号检测任务时的先前发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验