Suppr超能文献

转化早期药物遗传毒性评估:将统计学习应用于高通量、多终点体外微核试验。

Transforming early pharmaceutical assessment of genotoxicity: applying statistical learning to a high throughput, multi end point in vitro micronucleus assay.

机构信息

Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK.

Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK.

出版信息

Sci Rep. 2021 Jan 28;11(1):2535. doi: 10.1038/s41598-021-82115-5.

Abstract

To provide a comprehensive analysis of small molecule genotoxic potential we have developed and validated an automated, high-content, high throughput, image-based in vitro Micronucleus (IVM) assay. This assay simultaneously assesses micronuclei and multiple additional cellular markers associated with genotoxicity. Acoustic dosing (≤ 2 mg) of compound is followed by a 24-h treatment and a 24-h recovery period. Confocal images are captured [Cell Voyager CV7000 (Yokogawa, Japan)] and analysed using Columbus software (PerkinElmer). As standard the assay detects micronuclei (MN), cytotoxicity and cell-cycle profiles from Hoechst phenotypes. Mode of action information is primarily determined by kinetochore labelling in MN (aneugencity) and γH2AX foci analysis (a marker of DNA damage). Applying computational approaches and implementing machine learning models alongside Bayesian classifiers allows the identification of, with 95% accuracy, the aneugenic, clastogenic and negative compounds within the data set (Matthews correlation coefficient: 0.9), reducing analysis time by 80% whilst concurrently minimising human bias. Combining high throughput screening, multiparametric image analysis and machine learning approaches has provided the opportunity to revolutionise early Genetic Toxicology assessment within AstraZeneca. By multiplexing assay endpoints and minimising data generation and analysis time this assay enables complex genotoxicity safety assessments to be made sooner aiding the development of safer drug candidates.

摘要

为了全面分析小分子遗传毒性潜能,我们开发并验证了一种自动化、高通量、基于图像的体外微核(IVM)检测方法。该检测方法同时评估微核和多个与遗传毒性相关的其他细胞标记物。采用声处理(≤2mg)化合物,随后进行 24 小时处理和 24 小时恢复期。通过共聚焦显微镜(Yokogawa,日本的 Cell Voyager CV7000)捕获图像,并使用 Columbus 软件(PerkinElmer)进行分析。作为标准,该检测方法可检测微核(MN)、细胞毒性和细胞周期图谱,基于 Hoechst 表型。作用模式信息主要通过 MN 中的着丝粒标记(非整倍性)和 γH2AX 焦点分析(DNA 损伤的标志物)来确定。应用计算方法和实施机器学习模型以及贝叶斯分类器,可以 95%的准确率识别数据集内的致变剂、断裂剂和阴性化合物(马氏相关系数:0.9),将分析时间减少 80%,同时最大程度减少人为偏见。高通量筛选、多参数图像分析和机器学习方法的结合为阿斯利康内的早期遗传毒性评估带来了革命性的变化。通过对检测终点进行多重分析,并最大限度地减少数据生成和分析时间,该检测方法能够更快地进行复杂的遗传毒性安全性评估,从而帮助开发更安全的候选药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9099/7844000/d2894620ef6a/41598_2021_82115_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验