Cao Jiexin, Ribelayga Christophe P, Mangel Stuart C
Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States.
Front Cell Neurosci. 2021 Jan 12;14:605067. doi: 10.3389/fncel.2020.605067. eCollection 2020.
Adenosine, a major neuromodulator in the central nervous system (CNS), is involved in a variety of regulatory functions such as the sleep/wake cycle. Because exogenous adenosine displays dark- and night-mimicking effects in the vertebrate retina, we tested the hypothesis that a circadian (24 h) clock in the retina uses adenosine to control neuronal light responses and information processing. Using a variety of techniques in the intact goldfish retina including measurements of adenosine overflow and content, tracer labeling, and electrical recording of the light responses of cone photoreceptor cells and cone horizontal cells (cHCs), which are post-synaptic to cones, we demonstrate that a circadian clock in the retina itself-but not activation of melatonin or dopamine receptors-controls extracellular and intracellular adenosine levels so that they are highest during the subjective night. Moreover, the results show that the clock increases extracellular adenosine at night by enhancing adenosine content so that inward adenosine transport ceases. Also, we report that circadian clock control of endogenous cone adenosine A receptor activation increases rod-cone gap junction coupling and rod input to cones and cHCs at night. These results demonstrate that adenosine and A receptor activity are controlled by a circadian clock in the retina, and are used by the clock to modulate rod-cone electrical synapses and the sensitivity of cones and cHCs to very dim light stimuli. Moreover, the adenosine system represents a separate circadian-controlled pathway in the retina that is independent of the melatonin/dopamine pathway but which nevertheless acts in concert to enhance the day/night difference in rod-cone coupling.
腺苷是中枢神经系统(CNS)中的一种主要神经调质,参与多种调节功能,如睡眠/觉醒周期。由于外源性腺苷在脊椎动物视网膜中表现出模拟黑暗和夜晚的效应,我们测试了以下假设:视网膜中的昼夜节律(24小时)时钟利用腺苷来控制神经元的光反应和信息处理。我们在完整的金鱼视网膜中使用了多种技术,包括测量腺苷的溢出和含量、示踪剂标记,以及对锥状光感受器细胞和锥状水平细胞(cHCs,它们是锥体细胞的突触后细胞)的光反应进行电记录。我们证明,视网膜自身的昼夜节律时钟——而非褪黑素或多巴胺受体的激活——控制细胞外和细胞内的腺苷水平,使其在主观夜间达到最高。此外,结果表明,该时钟通过增加腺苷含量在夜间提高细胞外腺苷水平,从而使腺苷的内向转运停止。而且,我们报告称,内源性锥体细胞腺苷A受体激活的昼夜节律时钟控制在夜间增加视杆细胞与视锥细胞之间的缝隙连接耦合以及视杆细胞向视锥细胞和cHCs的输入。这些结果表明,腺苷和A受体活性受视网膜中的昼夜节律时钟控制,并且该时钟利用它们来调节视杆细胞与视锥细胞之间的电突触以及视锥细胞和cHCs对非常微弱光刺激的敏感性。此外,腺苷系统代表了视网膜中一条独立的昼夜节律控制途径,它独立于褪黑素/多巴胺途径,但仍协同作用以增强视杆细胞与视锥细胞耦合的昼夜差异。