Suppr超能文献

ChiRA:一种整合的框架,用于从 RNA-RNA 互作组学和 RNA 结构组学数据中分析嵌合读取。

ChiRA: an integrated framework for chimeric read analysis from RNA-RNA interactome and RNA structurome data.

机构信息

Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany.

Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany.

出版信息

Gigascience. 2021 Jan 29;10(2). doi: 10.1093/gigascience/giaa158.

Abstract

BACKGROUND

With the advances in next-generation sequencing technologies, it is possible to determine RNA-RNA interaction and RNA structure predictions on a genome-wide level. The reads from these experiments usually are chimeric, with each arm generated from one of the interaction partners. Owing to short read lengths, often these sequenced arms ambiguously map to multiple locations. Thus, inferring the origin of these can be quite complicated. Here we present ChiRA, a generic framework for sensitive annotation of these chimeric reads, which in turn can be used to predict the sequenced hybrids.

RESULTS

Grouping reference loci on the basis of aligned common reads and quantification improved the handling of the multi-mapped reads in contrast to common strategies such as the selection of the longest hit or a random choice among all hits. On benchmark data ChiRA improved the number of correct alignments to the reference up to 3-fold. It is shown that the genes that belong to the common read loci share the same protein families or similar pathways. In published data, ChiRA could detect 3 times more new interactions compared to existing approaches. In addition, ChiRAViz can be used to visualize and filter large chimeric datasets intuitively.

CONCLUSION

ChiRA tool suite provides a complete analysis and visualization framework along with ready-to-use Galaxy workflows and tutorials for RNA-RNA interactome and structurome datasets. Common read loci built by ChiRA can rescue multi-mapped reads on paralogous genes without requiring any information on gene relations. We showed that ChiRA is sensitive in detecting new RNA-RNA interactions from published RNA-RNA interactome datasets.

摘要

背景

随着下一代测序技术的进步,有可能在全基因组水平上确定 RNA-RNA 相互作用和 RNA 结构预测。这些实验的reads 通常是嵌合的,每条臂都来自于一个相互作用的伙伴。由于读长较短,这些测序臂通常会模糊地映射到多个位置。因此,推断这些来源可能非常复杂。在这里,我们提出了 ChiRA,这是一种用于敏感注释这些嵌合reads 的通用框架,反过来又可以用于预测测序的杂交体。

结果

基于对齐的公共reads 对参考基因座进行分组,并对其进行定量,与常见策略(如选择最长命中或在所有命中中随机选择)相比,这种方法可以更好地处理多映射reads。在基准数据上,ChiRA 将参考基因的正确比对数量提高了 3 倍。结果表明,属于公共read 基因座的基因具有相同的蛋白质家族或相似的途径。在已发表的数据中,与现有方法相比,ChiRA 可以检测到 3 倍以上的新相互作用。此外,ChiRAViz 可用于直观地可视化和筛选大型嵌合数据集。

结论

ChiRA 工具套件提供了完整的分析和可视化框架,以及用于 RNA-RNA 互作组和结构组数据集的即用型 Galaxy 工作流程和教程。ChiRA 构建的公共 read 基因座可以在不要求任何基因关系信息的情况下,挽救同源基因的多映射 reads。我们表明,ChiRA 能够灵敏地检测来自已发表的 RNA-RNA 互作组数据集的新 RNA-RNA 相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3de/7844879/4e5852580746/giaa158fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验