Global DMPK, Takeda California Inc., San Diego, California 92121, United States.
Mol Pharm. 2021 Mar 1;18(3):1071-1079. doi: 10.1021/acs.molpharmaceut.0c01009. Epub 2021 Jan 29.
Accurate prediction of oral pharmacokinetics remains challenging. This study investigated quantitative approaches for the prediction of the area under the plasma concentration-time curve after oral administration (AUC) to rats using the in vitro-in vivo extrapolation (IVIVE), in silico model using machine learning approaches and the combination of the in silico model and in vitro data. A set of 595 structurally diverse compounds with determined AUC at 1 mg/kg, in vitro intrinsic clearance (CL), an unbound fraction in plasma () in rats, and kinetic solubility at pH 6.8 was used for this assessment. Prediction models developed by two different types of machine learning techniques (i.e., random forest regression and Gaussian processes) were evaluated using three validation methods implementing the time and cluster-split training and test set and fivefold cross-validation. The developed machine learning models have a square of correlation coefficient () in the range of 0.381-0.685 with 33-45% of the compounds being predicted within 2-fold of the observed AUC value. The predictivity was improved by incorporating CL, , and solubility as explanatory variables with = 0.554-0.743. In cases where extraction by the liver is the main elimination pathway and intestinal extraction is negligible, AUC can be expressed by dose, CL, and based on a well-stirred model. By using this conventional IVIVE approach, only 1.7-5.0% of compounds were predicted within the 2-fold error with = 0.354-0.487. Two empirical scaling factors (ESFs) determined by linear regression analysis and machine learning approaches improved the predictivity of AUC with 33-44% predicted within twofold variability. The IVIVE using ESF predicted by random forest regression showed better predictivity of AUC with = 0.471-0.618, while it still showed lower predictivity than machine learning approaches applied directly to AUC prediction. This study demonstrated that the combination of in silico and in vitro parameters is useful to improve the predictivity of the machine learning model for rat AUC and supports consideration for predicting AUC for human and other non-clinical species in a similar manner.
准确预测口服药代动力学仍然具有挑战性。本研究采用体外-体内外推法(IVIVE)、基于机器学习方法的计算模型以及计算模型和体外数据相结合的方法,研究了定量预测大鼠口服给药后血浆浓度-时间曲线下面积(AUC)的方法。该研究使用了一组 595 种结构不同的化合物,这些化合物在 1mg/kg 时的 AUC、体外内在清除率(CL)、大鼠血浆中未结合分数()和在 pH6.8 时的动力学溶解度已被确定。采用两种不同类型的机器学习技术(即随机森林回归和高斯过程)开发的预测模型,通过三种验证方法进行了评估,这些验证方法分别实施了时间和聚类分割训练和测试集以及五倍交叉验证。开发的机器学习模型的相关系数()平方在 0.381-0.685 之间,其中 33-45%的化合物的 AUC 值预测值在实测 AUC 值的 2 倍以内。通过将 CL、和溶解度作为解释变量纳入模型,预测能力得到了提高,相关系数()为 0.554-0.743。在肝脏提取是主要消除途径且肠内提取可忽略不计的情况下,AUC 可以根据一个充分搅拌模型用剂量、CL 和表示。使用这种传统的 IVIVE 方法,只有 1.7-5.0%的化合物的 AUC 值预测值在 2 倍误差内,相关系数()为 0.354-0.487。线性回归分析和机器学习方法确定的两个经验标度因子(ESF)提高了 AUC 的预测能力,有 33-44%的化合物的 AUC 值预测值在 2 倍变化范围内。采用随机森林回归确定的 ESF 的 IVIVE 对 AUC 的预测能力更好,相关系数()为 0.471-0.618,尽管它的预测能力仍低于直接应用于 AUC 预测的机器学习方法。本研究表明,将体内和体外参数相结合,有助于提高机器学习模型对大鼠 AUC 的预测能力,并支持以类似的方式预测人类和其他非临床物种的 AUC。