Suppr超能文献

机器学习与基于机制的体外-体内推断模型预测人体内在清除率的比较。

The Comparison of Machine Learning and Mechanistic In Vitro-In Vivo Extrapolation Models for the Prediction of Human Intrinsic Clearance.

机构信息

Translational Modeling and Simulation, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States.

Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States.

出版信息

Mol Pharm. 2023 Nov 6;20(11):5616-5630. doi: 10.1021/acs.molpharmaceut.3c00502. Epub 2023 Oct 9.

Abstract

Accurate prediction of human pharmacokinetics (PK) remains one of the key objectives of drug metabolism and PK (DMPK) scientists in drug discovery projects. This is typically performed by using in vitro-in vivo extrapolation (IVIVE) based on mechanistic PK models. In recent years, machine learning (ML), with its ability to harness patterns from previous outcomes to predict future events, has gained increased popularity in application to absorption, distribution, metabolism, and excretion (ADME) sciences. This study compares the performance of various ML and mechanistic models for the prediction of human IV clearance for a large (645) set of diverse compounds with literature human IV PK data, as well as measured relevant in vitro end points. ML models were built using multiple approaches for the descriptors: (1) calculated physical properties and structural descriptors based on chemical structure alone (classical QSAR/QSPR); (2) in vitro measured inputs only with no structure-based descriptors (ML IVIVE); and (3) in silico ML IVIVE using in silico model predictions for the in vitro inputs. For the mechanistic models, well-stirred and parallel-tube liver models were considered with and without the use of empirical scaling factors and with and without renal clearance. The best ML model for the prediction of in vivo human intrinsic clearance (CL) was an in vitro ML IVIVE model using only six in vitro inputs with an average absolute fold error (AAFE) of 2.5. The best mechanistic model used the parallel-tube liver model, with empirical scaling factors resulting in an AAFE of 2.8. The corresponding mechanistic model with full in silico inputs achieved an AAFE of 3.3. These relative performances of the models were confirmed with the prediction of 16 Pfizer drug candidates that were not part of the original data set. Results show that ML IVIVE models are comparable to or superior to their best mechanistic counterparts. We also show that ML IVIVE models can be used to derive insights into factors for the improvement of mechanistic PK prediction.

摘要

准确预测人体药代动力学(PK)仍然是药物代谢和 PK(DMPK)科学家在药物发现项目中的主要目标之一。这通常是通过使用基于机制 PK 模型的体外-体内外推法(IVIVE)来实现的。近年来,机器学习(ML)凭借从以往结果中提取模式来预测未来事件的能力,在吸收、分布、代谢和排泄(ADME)科学中的应用越来越受欢迎。本研究比较了各种 ML 和机制模型在预测 645 种具有文献人体 IVPK 数据和测量相关体外终点的不同化合物的人体 IV 清除率方面的性能。ML 模型使用多种方法构建描述符:(1)仅基于化学结构计算物理性质和结构描述符(经典 QSAR/QSPR);(2)仅使用体外测量输入,不使用基于结构的描述符(ML IVIVE);(3)使用体外模型预测体外输入的基于计算的 ML IVIVE。对于机制模型,考虑了搅拌良好的和平行管肝模型,以及是否使用经验缩放因子,以及是否使用肾清除率。用于预测体内人体内在清除率(CL)的最佳 ML 模型是仅使用六个体外输入的体外 ML IVIVE 模型,平均绝对折叠误差(AAFE)为 2.5。使用经验缩放因子的最佳机制模型使用平行管肝模型,AAFE 为 2.8。具有完整的基于计算的输入的相应机制模型的 AAFE 为 3.3。这些模型的相对性能通过预测 16 种不属于原始数据集的 Pfizer 候选药物得到了验证。结果表明,ML IVIVE 模型与最佳机制模型相当或优于最佳机制模型。我们还表明,ML IVIVE 模型可用于深入了解改善机制 PK 预测的因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验