Donders Centre for Neuroscience, Radboud University, 6500 GL Nijmegen, The Netherlands,
Neural Comput. 2021 Mar 26;33(4):926-966. doi: 10.1162/neco_a_01369.
Neuronal networks in rodent primary visual cortex (V1) can generate oscillations in different frequency bands depending on the network state and the level of visual stimulation. High-frequency gamma rhythms, for example, dominate the network's spontaneous activity in adult mice but are attenuated upon visual stimulation, during which the network switches to the beta band instead. The spontaneous local field potential (LFP) of juvenile mouse V1, however, mainly contains beta rhythms and presenting a stimulus does not elicit drastic changes in network oscillations. We study, in a spiking neuron network model, the mechanism in adult mice allowing for flexible switches between multiple frequency bands and contrast this to the network structure in juvenile mice that lack this flexibility. The model comprises excitatory pyramidal cells (PCs) and two types of interneurons: the parvalbumin-expressing (PV) and the somatostatinexpressing (SOM) interneuron. In accordance with experimental findings, the pyramidal-PV and pyramidal-SOM cell subnetworks are associated with gamma and beta oscillations, respectively. In our model, they are both generated via a pyramidal-interneuron gamma (PING) mechanism, wherein the PCs drive the oscillations. Furthermore, we demonstrate that large but not small visual stimulation activates SOM cells, which shift the frequency of resting-state gamma oscillations produced by the pyramidal-PV cell subnetwork so that beta rhythms emerge. Finally, we show that this behavior is obtained for only a subset of PV and SOM interneuron projection strengths, indicating that their influence on the PCs should be balanced so that they can compete for oscillatory control of the PCs. In sum, we propose a mechanism by which visual beta rhythms can emerge from spontaneous gamma oscillations in a network model of the mouse V1; for this mechanism to reproduce V1 dynamics in adult mice, balance between the effective strengths of PV and SOM cells is required.
啮齿动物初级视觉皮层(V1)中的神经网络可以根据网络状态和视觉刺激水平产生不同频带的振荡。例如,高频伽马节律主导成年小鼠网络的自发活动,但在视觉刺激期间会减弱,此时网络切换到β频段。然而,幼年小鼠 V1 的自发局部场电位(LFP)主要包含β节律,并且呈现刺激不会引起网络振荡的剧烈变化。我们在一个尖峰神经元网络模型中研究了成年小鼠中允许在多个频带之间灵活切换的机制,并将其与缺乏这种灵活性的幼年小鼠网络结构进行了对比。该模型包含兴奋性锥体神经元(PC)和两种类型的中间神经元:表达 Parvalbumin 的(PV)和表达 Somatostatin 的(SOM)中间神经元。与实验结果一致,锥体-PV 和锥体-SOM 细胞子网分别与伽马和β振荡相关。在我们的模型中,它们都是通过一个锥体-中间神经元伽马(PING)机制产生的,其中 PC 驱动振荡。此外,我们证明,大而不是小的视觉刺激会激活 SOM 细胞,从而改变由锥体-PV 细胞子网产生的静息状态伽马振荡的频率,从而出现β节律。最后,我们表明,只有一部分 PV 和 SOM 中间神经元投射强度会产生这种行为,这表明它们对 PC 的影响应该是平衡的,以便它们可以竞争对 PC 的振荡控制。总之,我们提出了一种机制,通过该机制,视觉β节律可以从鼠标 V1 的网络模型中的自发伽马振荡中出现;为了使该机制再现成年小鼠 V1 的动力学,需要平衡 PV 和 SOM 细胞的有效强度。