Suppr超能文献

通过 Ursgal 辅助的联合方法增强开放修饰搜索。

Enhancing Open Modification Searches via a Combined Approach Facilitated by Ursgal.

机构信息

Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland.

出版信息

J Proteome Res. 2021 Apr 2;20(4):1986-1996. doi: 10.1021/acs.jproteome.0c00799. Epub 2021 Jan 29.

Abstract

The identification of peptide sequences and their post-translational modifications (PTMs) is a crucial step in the analysis of bottom-up proteomics data. The recent development of open modification search (OMS) engines allows virtually all PTMs to be searched for. This not only increases the number of spectra that can be matched to peptides but also greatly advances the understanding of the biological roles of PTMs through the identification, and the thereby facilitated quantification, of peptidoforms (peptide sequences and their potential PTMs). Whereas the benefits of combining results from multiple protein database search engines have been previously established, similar approaches for OMS results have been missing so far. Here we compare and combine results from three different OMS engines, demonstrating an increase in peptide spectrum matches of 8-18%. The unification of search results furthermore allows for the combined downstream processing of search results, including the mapping to potential PTMs. Finally, we test for the ability of OMS engines to identify glycosylated peptides. The implementation of these engines in the Python framework Ursgal facilitates the straightforward application of the OMS with unified parameters and results files, thereby enabling yet unmatched high-throughput, large-scale data analysis.

摘要

肽序列及其翻译后修饰(PTMs)的鉴定是进行自下而上蛋白质组学数据分析的关键步骤。最近开放修饰搜索(OMS)引擎的发展允许几乎所有的 PTMs 都可以被搜索到。这不仅增加了可以与肽匹配的谱数量,而且通过鉴定和促进肽形式(肽序列及其潜在的 PTMs)的定量,极大地推进了对 PTMs 生物学作用的理解。尽管以前已经确立了结合多个蛋白质数据库搜索引擎结果的优势,但到目前为止,类似的 OMS 结果的方法还没有出现。在这里,我们比较和结合了三种不同的 OMS 引擎的结果,证明肽谱匹配增加了 8-18%。搜索结果的统一还允许对搜索结果进行联合下游处理,包括潜在 PTMs 的映射。最后,我们测试了 OMS 引擎识别糖基化肽的能力。这些引擎在 Python 框架 Ursgal 中的实现简化了 OMS 的应用,具有统一的参数和结果文件,从而实现了无与伦比的高通量、大规模数据分析。

相似文献

1
Enhancing Open Modification Searches via a Combined Approach Facilitated by Ursgal.通过 Ursgal 辅助的联合方法增强开放修饰搜索。
J Proteome Res. 2021 Apr 2;20(4):1986-1996. doi: 10.1021/acs.jproteome.0c00799. Epub 2021 Jan 29.

引用本文的文献

本文引用的文献

2
O-Pair Search with MetaMorpheus for O-glycopeptide characterization.利用 MetaMorpheus 进行 O-糖肽结构分析的 O-对搜索。
Nat Methods. 2020 Nov;17(11):1133-1138. doi: 10.1038/s41592-020-00985-5. Epub 2020 Oct 26.
7
Crystal-C: A Computational Tool for Refinement of Open Search Results.Crystal-C:一种用于优化开放搜索结果的计算工具。
J Proteome Res. 2020 Jun 5;19(6):2511-2515. doi: 10.1021/acs.jproteome.0c00119. Epub 2020 May 8.
10
Glycosylation in health and disease.糖基化在健康和疾病中的作用。
Nat Rev Nephrol. 2019 Jun;15(6):346-366. doi: 10.1038/s41581-019-0129-4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验