Department of Mathematics and Computer Science , University of Antwerp , 2020 Antwerp , Belgium.
Biomedical Informatics Network Antwerpen (biomina) , 2020 Antwerp , Belgium.
J Proteome Res. 2018 Oct 5;17(10):3463-3474. doi: 10.1021/acs.jproteome.8b00359. Epub 2018 Sep 13.
Open modification searching (OMS) is a powerful search strategy that identifies peptides carrying any type of modification by allowing a modified spectrum to match against its unmodified variant by using a very wide precursor mass window. A drawback of this strategy, however, is that it leads to a large increase in search time. Although performing an open search can be done using existing spectral library search engines by simply setting a wide precursor mass window, none of these tools have been optimized for OMS, leading to excessive runtimes and suboptimal identification results. We present the ANN-SoLo tool for fast and accurate open spectral library searching. ANN-SoLo uses approximate nearest neighbor indexing to speed up OMS by selecting only a limited number of the most relevant library spectra to compare to an unknown query spectrum. This approach is combined with a cascade search strategy to maximize the number of identified unmodified and modified spectra while strictly controlling the false discovery rate as well as a shifted dot product score to sensitively match modified spectra to their unmodified counterparts. ANN-SoLo achieves state-of-the-art performance in terms of speed and the number of identifications. On a previously published human cell line data set, ANN-SoLo confidently identifies more spectra than SpectraST or MSFragger and achieves a speedup of an order of magnitude compared with SpectraST. ANN-SoLo is implemented in Python and C++. It is freely available under the Apache 2.0 license at https://github.com/bittremieux/ANN-SoLo .
开放修饰搜索(Open Modification Searching,OMS)是一种强大的搜索策略,通过使用非常宽的前体质量窗口,允许修饰后的光谱与其未修饰的变体匹配,从而识别携带任何类型修饰的肽。然而,这种策略的一个缺点是它会导致搜索时间大大增加。虽然可以通过简单地设置宽前体质量窗口,使用现有的光谱库搜索引擎来执行开放搜索,但这些工具都没有针对 OMS 进行优化,导致运行时间过长,鉴定结果不理想。我们提出了 ANN-SoLo 工具,用于快速准确地进行开放光谱库搜索。ANN-SoLo 使用近似最近邻索引来加速 OMS,方法是仅选择数量有限的最相关的库光谱与未知查询光谱进行比较。这种方法与级联搜索策略相结合,可以在严格控制假阳性率的同时,最大限度地增加鉴定的未修饰和修饰光谱的数量,并使用偏移点积分数来敏感地将修饰光谱与其未修饰的对应物匹配。ANN-SoLo 在速度和鉴定数量方面都达到了最新的水平。在之前发布的人类细胞系数据集上,ANN-SoLo 比 SpectraST 或 MSFragger 更有信心地鉴定出更多的光谱,并与 SpectraST 相比实现了数量级的加速。ANN-SoLo 是用 Python 和 C++编写的。它可以在 Apache 2.0 许可证下免费获得,网址为 https://github.com/bittremieux/ANN-SoLo。