Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
Nat Chem. 2021 Feb;13(2):123-130. doi: 10.1038/s41557-020-00621-x. Epub 2021 Jan 29.
Hydroformylation, a reaction that installs both a C-H bond and an aldehyde group across an unsaturated substrate, is one of the most important catalytic reactions in both industry and academia. Given the synthetic importance of creating new C-C bonds, the development of carboformylation reactions, wherein a new C-C bond is formed instead of a C-H bond, would bear enormous synthetic potential to rapidly increase molecular complexity in the synthesis of valuable aldehydes. However, the demanding complexity inherent in a four-component reaction, utilizing an exogenous CO source, has made the development of a direct carboformylation reaction a formidable challenge. Here, we describe a palladium-catalysed strategy that uses readily available aroyl chlorides as a carbon electrophile and CO source, in tandem with a sterically congested hydrosilane, to perform a stereoselective carboformylation of alkynes. An extension of this protocol to four chemodivergent carbonylations further highlights the creative opportunity offered by this strategy in carbonylation chemistry.
羟醛化反应是在不饱和底物上同时引入 C-H 键和醛基的反应,是工业和学术界最重要的催化反应之一。鉴于形成新的 C-C 键的合成重要性,形成新的 C-C 键而不是 C-H 键的碳甲酰化反应将具有巨大的合成潜力,可以快速增加有价值的醛的合成中的分子复杂性。然而,使用外源 CO 源的四组分反应固有的复杂要求使得直接碳甲酰化反应的发展成为一个艰巨的挑战。在这里,我们描述了一种钯催化策略,该策略使用易得的芳基氯作为碳亲电试剂和 CO 源,与空间位阻大的硅烷一起,对炔烃进行立体选择性的碳甲酰化。该方案的扩展到四种化学选择性羰基化反应进一步突出了该策略在羰基化化学中提供的创造性机会。