Suppr超能文献

不同增强集成机器学习模型及新型深度学习和增强框架对头切沟蚀敏感性的评价。

Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for head-cut gully erosion susceptibility.

机构信息

College of Geology & Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi'an, 710021, China.

College of Geology & Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China.

出版信息

J Environ Manage. 2021 Apr 15;284:112015. doi: 10.1016/j.jenvman.2021.112015. Epub 2021 Jan 28.

Abstract

The objective of this study is to assess the gully head-cut erosion susceptibility and identify gully erosion prone areas in the Meimand watershed, Iran. In recent years, this study area has been greatly influenced by several head-cut gullies due to unusual climatic factors and human induced activity. The present study is therefore intended to address this issue by developing head-cut gully erosion prediction maps using boosting ensemble machine learning algorithms, namely Boosted Tree (BT), Boosted Generalized Linear Models (BGLM), Boosted Regression Tree (BRT), Extreme Gradient Boosting (XGB), and Deep Boost (DB). Initially, we produced a gully erosion inventory map using a variety of resources, including published reports, Google Earth images, and field records of the Global Positioning System (GPS). Subsequently, we distributed this information randomly and choose 70% (102) of the test gullies and the remaining 30% (43) for validation. The methodology was designed using morphometric and thematic determinants, including 14 head-cut gully erosion conditioning features. We have also investigated the following: (a) Multi-collinearity analysis to determine the linearity of the independent variables, (b) Predictive capability of piping models using train and test dataset and (c) Variables importance affecting head-cut gully erosion. The study reveals that altitude, land use, distances from road and soil characteristics influenced the method with the greatest impact on head-cut gully erosion susceptibility. We presented five head-cut gully erosion susceptibility maps and investigated their predictive accuracy through area under curve (AUC). The AUC test reveals that the DB machine learning method demonstrated significantly higher accuracy (AUC = 0.95) than the BT (AUC = 0.93), BGLM (AUC = 0.91), BRT (AUC = 0.94) and XGB (AUC = 0.92) approaches. The predicted head-cut gully erosion susceptibility maps can be used by policy makers and local authorities for soil conservation and to prevent threats to human activities.

摘要

本研究旨在评估沟头切蚀敏感性并识别伊朗梅曼德流域的沟蚀易发区。近年来,由于异常的气候因素和人为活动,该研究区受到了几条沟头切沟的严重影响。因此,本研究旨在通过使用提升集成机器学习算法(即 Boosted Tree(BT)、Boosted Generalized Linear Models(BGLM)、Boosted Regression Tree(BRT)、Extreme Gradient Boosting(XGB)和 Deep Boost(DB))来开发沟头切蚀预测图来解决这个问题。

首先,我们使用多种资源制作了沟蚀清单图,包括已发表的报告、谷歌地球图像和全球定位系统(GPS)的野外记录。随后,我们随机分布了这些信息,并选择了 70%(102)的测试沟和剩余的 30%(43)用于验证。该方法使用形态和主题决定因素设计,包括 14 个沟头切蚀条件特征。我们还研究了以下内容:(a)多共线性分析以确定自变量的线性,(b)使用训练和测试数据集的管道模型的预测能力,以及(c)影响沟头切蚀的重要变量。

研究表明,海拔、土地利用、与道路的距离和土壤特征对方法的影响最大,对沟头切蚀敏感性影响最大。我们提出了五个沟头切蚀敏感性图,并通过曲线下面积(AUC)调查了它们的预测准确性。AUC 测试表明,DB 机器学习方法的准确性明显高于 BT(AUC=0.93)、BGLM(AUC=0.91)、BRT(AUC=0.94)和 XGB(AUC=0.92)方法。预测的沟头切蚀敏感性图可由决策者和地方当局用于土壤保护和防止对人类活动的威胁。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验