Usategui Iciar, Arroyo Yoel, Torres Ana María, Barbado Julia, Mateo Jorge
Department of Internal Medicine, Hospital Clínico Universitario, 47005 Valladolid, Spain.
Department of Technologies and Information Systems, Faculty of Social Sciences and Information Technologies, Universidad de Castilla-La Mancha (UCLM), 45600 Talavera de la Reina, Spain.
Bioengineering (Basel). 2024 Jan 17;11(1):0. doi: 10.3390/bioengineering11010090.
Systemic Lupus Erythematosus (SLE) is a multifaceted autoimmune ailment that impacts multiple bodily systems and manifests with varied clinical manifestations. Early detection is considered the most effective way to save patients' lives, but detecting severe SLE activity in its early stages is proving to be a formidable challenge. Consequently, this work advocates the use of Machine Learning (ML) algorithms for the diagnosis of SLE flares in the context of infections. In the pursuit of this research, the Random Forest (RF) method has been employed due to its performance attributes. With RF, our objective is to uncover patterns within the patient data. Multiple ML techniques have been scrutinized within this investigation. The proposed system exhibited around a 7.49% enhancement in accuracy when compared to k-Nearest Neighbors (KNN) algorithm. In contrast, the Support Vector Machine (SVM), Binary Linear Discriminant Analysis (BLDA), Decision Trees (DT) and Linear Regression (LR) methods demonstrated inferior performance, with respective values around 81%, 78%, 84% and 69%. It is noteworthy that the proposed method displayed a superior area under the curve (AUC) and balanced accuracy (both around 94%) in comparison to other ML approaches. These outcomes underscore the feasibility of crafting an automated diagnostic support method for SLE patients grounded in ML systems.
系统性红斑狼疮(SLE)是一种多方面的自身免疫性疾病,会影响多个身体系统,并表现出各种临床表现。早期检测被认为是挽救患者生命的最有效方法,但在早期阶段检测严重的SLE活动被证明是一项艰巨的挑战。因此,这项工作提倡使用机器学习(ML)算法来诊断感染情况下的SLE发作。在这项研究中,由于随机森林(RF)方法的性能属性而被采用。使用RF,我们的目标是在患者数据中发现模式。在这项调查中对多种ML技术进行了审查。与k近邻(KNN)算法相比,所提出的系统在准确率上提高了约7.49%。相比之下,支持向量机(SVM)、二元线性判别分析(BLDA)、决策树(DT)和线性回归(LR)方法表现较差,各自的值分别约为81%、78%、84%和69%。值得注意的是,与其他ML方法相比,所提出的方法在曲线下面积(AUC)和平衡准确率方面表现更优(两者均约为94%)。这些结果强调了基于ML系统为SLE患者制定自动化诊断支持方法可行性。