Suppr超能文献

基于集成学习的阿尔茨海默病分类:利用脑电图信号和画钟测试图像

Ensemble Learning-Based Alzheimer's Disease Classification Using Electroencephalogram Signals and Clock Drawing Test Images.

作者信息

Huh Young Jae, Park Jun-Ha, Kim Young Jae, Kim Kwang Gi

机构信息

Department of Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea.

Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon 21936, Republic of Korea.

出版信息

Sensors (Basel). 2025 May 2;25(9):2881. doi: 10.3390/s25092881.

Abstract

Ensemble learning (EL), a machine learning technique that combines the results of multiple learning algorithms to obtain predicted values, aims to achieve better predictive performance than a single learning algorithm alone. Machine learning techniques, including EL, have been applied in the field of medicine to assist in the clinical interpretation of specific diseases. Although neurodegenerative diseases, especially Alzheimer's disease (AD), are of interest to clinicians and researchers due to their rapid increase in clinical cases, the application of EL in AD diagnosis has been relatively less attempted. In this research, we demonstrate that three machine learning algorithms, trained on an ensemble of electroencephalogram (EEG) and clock drawing test (CDT) feature data for an AD classification task, show improved AD detection accuracy compared to when either the EEG or CDT dataset is used independently. We also explore which feature contributes most to decision-making in AD and healthy control (HC) classification. In conclusion, the current study suggests that EL can be a novel clinical application of machine learning (ML) in the automated AD screening process.

摘要

集成学习(EL)是一种机器学习技术,它将多个学习算法的结果结合起来以获得预测值,旨在实现比单一学习算法更好的预测性能。包括EL在内的机器学习技术已应用于医学领域,以协助对特定疾病进行临床解读。尽管神经退行性疾病,尤其是阿尔茨海默病(AD),因其临床病例的快速增加而受到临床医生和研究人员的关注,但EL在AD诊断中的应用相对较少尝试。在本研究中,我们证明,针对AD分类任务,在脑电图(EEG)和画钟试验(CDT)特征数据的集合上训练的三种机器学习算法,与单独使用EEG或CDT数据集时相比,显示出更高的AD检测准确率。我们还探讨了在AD和健康对照(HC)分类中,哪种特征对决策的贡献最大。总之,当前研究表明,EL可以成为机器学习(ML)在AD自动筛查过程中的一种新的临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73c3/12074475/ab85fc8d0f93/sensors-25-02881-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验