Suppr超能文献

一种新型磁性荧光分子印迹传感器,通过双重识别机制,用于食品样品中 4-硝基酚的高选择性和高灵敏度检测。

A novel magnetic fluorescent molecularly imprinted sensor for highly selective and sensitive detection of 4-nitrophenol in food samples through a dual-recognition mechanism.

机构信息

State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.

School of Resources, Environmental, and Chemical Engineering, Nanchang University, Nanchang 330031, China.

出版信息

Food Chem. 2021 Jun 30;348:129126. doi: 10.1016/j.foodchem.2021.129126. Epub 2021 Jan 19.

Abstract

In this study, surface imprinting, magnetic separation, and fluorescent detection were integrated to develop a dual-recognition sensor (MF-MIPs), which was used for highly selective and sensitive detection of 4-nitrophenol (4-NP) in food samples. Silane-functionalized carbon dots (Si-CDs) participated in the imprinting process and were uniformly distributed into the MIPs layers. MF-MIPs sensor exhibited a high fluorescence response and selectivity based on the dual-recognition mechanism of imprinting recognition and fluorescence identification. The relative fluorescence intensity of MF-MIPs sensor presented a good linear relationship in the range of 0.08-10 μmol·L with a low limit of detection (23.45 nmol·L) for 4NP. MF-MIPs sensor showed high anti-interference, as well as excellent stability and reusability. The 4-NP recovery from spiked food samples ranged from 93.20 to 102.15%, and the relative standard deviation was lower than 5.0%. Therefore, MF-MIPs sensor may be a promising method for 4-NP detection in food samples.

摘要

在这项研究中,表面印迹、磁分离和荧光检测被集成到一种双重识别传感器(MF-MIPs)中,用于高度选择性和灵敏地检测食品样品中的 4-硝基苯酚(4-NP)。硅烷功能化碳点(Si-CDs)参与印迹过程,并均匀分布在 MIPs 层中。基于印迹识别和荧光识别的双重识别机制,MF-MIPs 传感器表现出高荧光响应和选择性。MF-MIPs 传感器的相对荧光强度在 0.08-10 μmol·L 范围内呈现出良好的线性关系,4NP 的检测限(23.45 nmol·L)较低。MF-MIPs 传感器具有高抗干扰性,以及出色的稳定性和可重复性。从加标食品样品中回收的 4-NP 范围为 93.20%至 102.15%,相对标准偏差低于 5.0%。因此,MF-MIPs 传感器可能是一种用于食品样品中 4-NP 检测的有前途的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验