Suppr超能文献

山地畜牧业研究的主题和趋势:一种文本挖掘方法。

Topics and trends in Mountain Livestock Farming research: a text mining approach.

机构信息

Department of Food, Agricultural, Environmental and Animal Science, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.

Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università 2, Legnaro, 35020 Padova, Italy.

出版信息

Animal. 2021 Jan;15(1):100058. doi: 10.1016/j.animal.2020.100058. Epub 2020 Dec 18.

Abstract

Pasture-based and small-scale livestock farming systems are the main source of livelihood in the mountain primary sector, ensuring socioeconomic sustainability and biodiversity in rural communities throughout Europe and beyond. Mountain livestock farming (MLF) has attracted substantial research efforts from a wide variety of scientific communities worldwide. In this study, the use of text mining and topic modelling analysis drew a detailed picture of the main research topics dealing with MLF and their trends over the last four decades. The final data corpus used for the analysis counted 2 679 documents, of which 92% were peer-reviewed scientific publications. The number of scientific outputs in MLF doubled every 10 years since 1980. Text mining found that milk, goat and sheep were the terms with the highest weighed frequency in the data corpus. Ten meaningful topics were identified by topic analysis: T1-Livestock management and vegetation dynamics; T2-Animal health and epidemiology; T3-Methodological studies on cattle; T4-Production system and sustainability; T5-Methodological studies; T6-Wildlife and conservation studies; T7-Reproduction and performance; T8-Dairy/meat production and quality; T9-Land use and its change and T10-Genetic/genomic studies. A hierarchical clustering analysis was performed to explore the interrelationships among topics, and three main clusters were identified: the first focused on sustainability, conservation and socioeconomic aspects (T4; T6 and T9), the second was related to food production and quality (T7 and T8) and the last one considered methodological studies on mountain flora and fauna (T1; T2; T3; T5 and T10). The 10 topics identified represent a useful and a starting source of information for further and more detailed analysis (e.g. systematic review) of specific research or geographical areas. A truly holistic and interdisciplinary research approach is needed to identify drivers of change and to understand current and future challenges faced by livestock farming in mountain areas.

摘要

基于牧场的小规模畜牧业是山区初级部门的主要生计来源,确保了整个欧洲乃至其他地区农村社区的社会经济可持续性和生物多样性。山区畜牧业(MLF)吸引了来自全球各种科学领域的大量研究工作。在这项研究中,使用文本挖掘和主题建模分析详细描绘了处理 MLF 的主要研究主题及其在过去四十年中的趋势。用于分析的最终数据语料库包含 2679 篇文档,其中 92%是经过同行评审的科学出版物。自 1980 年以来,MLF 的科学产出数量每 10 年翻一番。文本挖掘发现,牛奶、山羊和绵羊是数据语料库中权重最高的术语。通过主题分析确定了 10 个有意义的主题:T1-牲畜管理和植被动态;T2-动物健康和流行病学;T3-牛的方法学研究;T4-生产系统和可持续性;T5-方法学研究;T6-野生动物和保护研究;T7-繁殖和性能;T8-奶制品/肉类生产和质量;T9-土地利用及其变化和 T10-遗传/基因组研究。进行了层次聚类分析以探索主题之间的相互关系,并确定了三个主要聚类:第一个重点是可持续性、保护和社会经济方面(T4;T6 和 T9),第二个与食品生产和质量有关(T7 和 T8),最后一个考虑了山区动植物的方法学研究(T1;T2;T3;T5 和 T10)。确定的 10 个主题是进一步和更详细地分析(例如系统评价)特定研究或地理区域的有用且起始信息源。需要采取真正的整体和跨学科研究方法来确定变化的驱动因素,并了解山区畜牧业当前和未来面临的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验