Suppr超能文献

用于识别和描述驱动液-液相分离的蛋白质的计算资源。

Computational resources for identifying and describing proteins driving liquid-liquid phase separation.

机构信息

Enzymology Institute of the Research Centre for Natural Sciences, Budapest, Hungary.

Computer Science, chemistry and biomedical sciences at the Vrije Universiteit Brussel, Belgium.

出版信息

Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbaa408.

Abstract

One of the most intriguing fields emerging in current molecular biology is the study of membraneless organelles formed via liquid-liquid phase separation (LLPS). These organelles perform crucial functions in cell regulation and signalling, and recent years have also brought about the understanding of the molecular mechanism of their formation. The LLPS field is continuously developing and optimizing dedicated in vitro and in vivo methods to identify and characterize these non-stoichiometric molecular condensates and the proteins able to drive or contribute to LLPS. Building on these observations, several computational tools and resources have emerged in parallel to serve as platforms for the collection, annotation and prediction of membraneless organelle-linked proteins. In this survey, we showcase recent advancements in LLPS bioinformatics, focusing on (i) available databases and ontologies that are necessary to describe the studied phenomena and the experimental results in an unambiguous way and (ii) prediction methods to assess the potential LLPS involvement of proteins. Through hands-on application of these resources on example proteins and representative datasets, we give a practical guide to show how they can be used in conjunction to provide in silico information on LLPS.

摘要

当前分子生物学中涌现出的最有趣的领域之一是研究通过液-液相分离 (LLPS) 形成的无膜细胞器。这些细胞器在细胞调节和信号转导中发挥着关键作用,近年来也对其形成的分子机制有了一定的了解。LLPS 领域正在不断发展和优化专门的体外和体内方法,以识别和表征这些非化学计量的分子凝聚物以及能够驱动或促成 LLPS 的蛋白质。基于这些观察结果,几个计算工具和资源也应运而生,作为收集、注释和预测无膜细胞器相关蛋白质的平台。在本综述中,我们展示了 LLPS 生物信息学的最新进展,重点介绍了 (i) 可用的数据库和本体论,这些是用明确的方式描述所研究现象和实验结果所必需的,以及 (ii) 用于评估蛋白质潜在 LLPS 参与的预测方法。通过在示例蛋白质和代表性数据集上实际应用这些资源,我们提供了一个实用指南,展示了如何结合使用它们以提供关于 LLPS 的计算信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7905/8425267/f8a888447e62/bbaa408f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验