Suppr超能文献

ParSe 2.0:一种在蛋白质组水平上识别蛋白质相分离驱动因素的网络工具。

ParSe 2.0: A web tool to identify drivers of protein phase separation at the proteome level.

机构信息

Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA.

Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA.

出版信息

Protein Sci. 2023 Sep;32(9):e4756. doi: 10.1002/pro.4756.

Abstract

We have developed an algorithm, ParSe, which accurately identifies from the primary sequence those protein regions likely to exhibit physiological phase separation behavior. Originally, ParSe was designed to test the hypothesis that, for flexible proteins, phase separation potential is correlated to hydrodynamic size. While our results were consistent with that idea, we also found that many different descriptors could successfully differentiate between three classes of protein regions: folded, intrinsically disordered, and phase-separating intrinsically disordered. Consequently, numerous combinations of amino acid property scales can be used to make robust predictions of protein phase separation. Built from that finding, ParSe 2.0 uses an optimal set of property scales to predict domain-level organization and compute a sequence-based prediction of phase separation potential. The algorithm is fast enough to scan the whole of the human proteome in minutes on a single computer and is equally or more accurate than other published predictors in identifying proteins and regions within proteins that drive phase separation. Here, we describe a web application for ParSe 2.0 that may be accessed through a browser by visiting https://stevewhitten.github.io/Parse_v2_FASTA to quickly identify phase-separating proteins within large sequence sets, or by visiting https://stevewhitten.github.io/Parse_v2_web to evaluate individual protein sequences.

摘要

我们开发了一种算法 ParSe,可以从蛋白质的一级序列中准确识别出那些可能具有生理相分离行为的区域。最初,ParSe 被设计用来检验这样一个假设,即对于柔性蛋白质,相分离潜力与流体力学大小相关。虽然我们的结果与这一想法一致,但我们也发现,许多不同的描述符可以成功地区分三类蛋白质区域:折叠、固有无序和相分离的固有无序。因此,可以使用多种氨基酸性质尺度的组合来对蛋白质相分离进行稳健的预测。基于这一发现,ParSe 2.0 使用最佳的属性尺度组合来预测结构域级别的组织,并基于序列预测相分离潜力。该算法足够快,可以在一台计算机上在几分钟内扫描整个人类蛋白质组,并且在识别蛋白质和蛋白质内部驱动相分离的区域方面,其准确性与其他已发表的预测器相当或更高。在这里,我们描述了一个 ParSe 2.0 的网络应用程序,可以通过访问 https://stevewhitten.github.io/Parse_v2_FASTA 来通过浏览器快速识别大序列集中的相分离蛋白质,也可以通过访问 https://stevewhitten.github.io/Parse_v2_web 来评估单个蛋白质序列。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad3/10464302/6848c2925af6/PRO-32-e4756-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验