Suppr超能文献

泛癌种单患者分辨率下的驱动基因检测。

Pan-cancer detection of driver genes at the single-patient resolution.

机构信息

Cancer Systems Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.

School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK.

出版信息

Genome Med. 2021 Feb 1;13(1):12. doi: 10.1186/s13073-021-00830-0.

Abstract

BACKGROUND

Identifying the complete repertoire of genes that drive cancer in individual patients is crucial for precision oncology. Most established methods identify driver genes that are recurrently altered across patient cohorts. However, mapping these genes back to patients leaves a sizeable fraction with few or no drivers, hindering our understanding of cancer mechanisms and limiting the choice of therapeutic interventions.

RESULTS

We present sysSVM2, a machine learning software that integrates cancer genetic alterations with gene systems-level properties to predict drivers in individual patients. Using simulated pan-cancer data, we optimise sysSVM2 for application to any cancer type. We benchmark its performance on real cancer data and validate its applicability to a rare cancer type with few known driver genes. We show that drivers predicted by sysSVM2 have a low false-positive rate, are stable and disrupt well-known cancer-related pathways.

CONCLUSIONS

sysSVM2 can be used to identify driver alterations in patients lacking sufficient canonical drivers or belonging to rare cancer types for which assembling a large enough cohort is challenging, furthering the goals of precision oncology. As resources for the community, we provide the code to implement sysSVM2 and the pre-trained models in all TCGA cancer types ( https://github.com/ciccalab/sysSVM2 ).

摘要

背景

确定驱动个体患者癌症的完整基因谱对于精准肿瘤学至关重要。大多数已建立的方法识别的是在患者群体中反复改变的驱动基因。然而,将这些基因映射回患者,仍有相当一部分患者的驱动基因很少或没有,这阻碍了我们对癌症机制的理解,并限制了治疗干预的选择。

结果

我们提出了 sysSVM2,这是一款机器学习软件,它将癌症基因改变与基因系统水平特性相结合,以预测个体患者的驱动基因。我们使用模拟的泛癌症数据对 sysSVM2 进行了优化,以应用于任何癌症类型。我们在真实的癌症数据上对其性能进行了基准测试,并验证了其在罕见癌症类型中的适用性,这些癌症类型已知的驱动基因很少。我们表明,sysSVM2 预测的驱动基因具有较低的假阳性率,稳定且破坏了已知的癌症相关途径。

结论

sysSVM2 可用于识别缺乏足够典型驱动基因的患者或属于罕见癌症类型的患者中的驱动改变,这些癌症类型组装足够大的队列具有挑战性,进一步实现了精准肿瘤学的目标。作为社区资源,我们提供了在所有 TCGA 癌症类型中实现 sysSVM2 和预训练模型的代码(https://github.com/ciccalab/sysSVM2)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b49f/7849133/dacdd36a25e0/13073_2021_830_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验