Suppr超能文献

肿瘤内在和外在(免疫)基因特征能够有力地预测高级别浆液性卵巢癌患者的总生存期和治疗反应。

Tumor-intrinsic and -extrinsic (immune) gene signatures robustly predict overall survival and treatment response in high grade serous ovarian cancer patients.

作者信息

Mysona David P, Tran Lynn, Bai Shan, Dos Santos Bruno, Ghamande Sharad, Chan John, She Jin-Xiong

机构信息

University of North Carolina Chapel Hill, NC 27517, USA.

Jinfiniti Precision Medicine, Inc. Augusta, GA 30907, USA.

出版信息

Am J Cancer Res. 2021 Jan 1;11(1):181-199. eCollection 2021.

Abstract

In the present study, we developed a transcriptomic signature capable of predicting prognosis and response to primary therapy in high grade serous ovarian cancer (HGSOC). Proportional hazard analysis was performed on individual genes in the TCGA RNAseq data set containing 229 HGSOC patients. Ridge regression analysis was performed to select genes and develop multigenic models. Survival analysis identified 120 genes whose expression levels were associated with overall survival (OS) (HR = 1.49-2.46 or HR = 0.48-0.63). Ridge regression modeling selected 38 of the 120 genes for development of the final Ridge regression models. The consensus model based on plurality voting by 68 individual Ridge regression models classified 102 (45%) as low, 23 (10%) as moderate and 104 patients (45%) as high risk. The median OS was 31 months (HR = 7.63, 95% CI = 4.85-12.0, P < 1.0) and 77 months (HR = ) in the high and low risk groups, respectively. The gene signature had two components: intrinsic (proliferation, metastasis, autophagy) and extrinsic (immune evasion). Moderate/high risk patients had more partial and non-responses to primary therapy than low risk patients (odds ratio = 4.54, P < 0.001). We concluded that the overall survival and response to primary therapy in ovarian cancer is best assessed using a combination of gene signatures. A combination of genes which combines both tumor intrinsic and extrinsic functions has the best prediction. Validation studies are warranted in the future.

摘要

在本研究中,我们开发了一种转录组特征,能够预测高级别浆液性卵巢癌(HGSOC)的预后和对初始治疗的反应。对包含229例HGSOC患者的TCGA RNAseq数据集中的单个基因进行了比例风险分析。进行岭回归分析以选择基因并建立多基因模型。生存分析确定了120个基因,其表达水平与总生存期(OS)相关(HR = 1.49 - 2.46或HR = 0.48 - 0.63)。岭回归建模从120个基因中选择了38个用于最终岭回归模型的构建。基于68个个体岭回归模型的多数投票得出的共识模型将102例(45%)患者分类为低风险,23例(10%)为中度风险,104例(45%)为高风险。高风险和低风险组的中位OS分别为31个月(HR = 7.63,95%CI = 4.85 - 12.0,P < 1.0)和77个月(HR = )。该基因特征有两个组成部分:内在(增殖、转移、自噬)和外在(免疫逃逸)。中度/高风险患者对初始治疗的部分反应和无反应比低风险患者更多(优势比 = 4.54,P < 0.001)。我们得出结论,使用基因特征组合可以最好地评估卵巢癌的总生存期和对初始治疗的反应。结合肿瘤内在和外在功能的基因组合具有最佳预测效果。未来有必要进行验证研究。

相似文献

本文引用的文献

7
NCCN Guidelines Insights: Ovarian Cancer, Version 1.2019.NCCN 指南解读:卵巢癌,第 1.2019 版。
J Natl Compr Canc Netw. 2019 Aug 1;17(8):896-909. doi: 10.6004/jnccn.2019.0039.
9
SOX11: friend or foe in tumor prevention and carcinogenesis?SOX11:肿瘤预防和致癌过程中的朋友还是敌人?
Ther Adv Med Oncol. 2019 Jun 3;11:1758835919853449. doi: 10.1177/1758835919853449. eCollection 2019.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验