Thyagarajan Krishnan, Lujan Rene A, Wang Qian, Lu JengPing, Kor Sivkheng, Kakimoto Bruce, Chang Norine, Bert Julie A
Palo Alto Research Center (PARC), a Xerox Company, Palo Alto, California 94304, USA.
APL Mater. 2021 Jan 1;9(1):011102. doi: 10.1063/5.0023486.
Neural probes for intracortical neuromodulation in the brain have advanced with the developments in micro- and nanofabrication technologies. Most of these technologies for the intracortical stimulation have relied on the direct electrical stimulation via electrodes or arrays of electrodes. Generating electric fields using time-varying magnetic fields is a more recent neuromodulation technique that has proven to be more specifically effective for the intracortical stimulation. Additionally, current-actuated coils require no conductive contact with tissues and enable precise tailoring of magnetic fields, which are unaffected by the non-magnetic nature of the biological tissue and encapsulation layers. The material and design parameter space for such micro-coil fabrication can be optimized and tailored to deliver the ideal performance depending on the parameters needed for operation. In this work, we review the key requirements for implantable microcoils including the probe structure and material properties and discuss their characteristics and related challenges for the applications in intracortical neuromodulation.
随着微纳制造技术的发展,用于大脑皮层内神经调节的神经探针也取得了进展。大多数用于皮层内刺激的技术都依赖于通过电极或电极阵列进行直接电刺激。利用时变磁场产生电场是一种较新的神经调节技术,已被证明对皮层内刺激更具特异性效果。此外,电流驱动线圈无需与组织进行导电接触,能够精确调整磁场,而磁场不受生物组织和封装层的非磁性性质影响。这种微线圈制造的材料和设计参数空间可以根据操作所需的参数进行优化和定制,以实现理想性能。在这项工作中,我们回顾了可植入微线圈的关键要求,包括探针结构和材料特性,并讨论了它们在皮层内神经调节应用中的特点及相关挑战。