Suppr超能文献

CoVerifi:一个新冠疫情新闻核实系统。

CoVerifi: A COVID-19 news verification system.

作者信息

Kolluri Nikhil L, Murthy Dhiraj

机构信息

Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78712, United States.

School of Journalism and Media, Moody College of Communication and Department of Sociology, University of Texas at Austin, Austin, TX 78712, United States.

出版信息

Online Soc Netw Media. 2021 Mar;22:100123. doi: 10.1016/j.osnem.2021.100123. Epub 2021 Jan 23.

Abstract

There is an abundance of misinformation, disinformation, and "fake news" related to COVID-19, leading the director-general of the World Health Organization to term this an 'infodemic'. Given the high volume of COVID-19 content on the Internet, many find it difficult to evaluate veracity. Vulnerable and marginalized groups are being misinformed and subject to high levels of stress. Riots and panic buying have also taken place due to "fake news". However, individual research-led websites can make a major difference in terms of providing accurate information. For example, the Johns Hopkins Coronavirus Resource Center website has over 81 million entries linked to it on Google. With the outbreak of COVID-19 and the knowledge that deceptive news has the potential to measurably affect the beliefs of the public, new strategies are needed to prevent the spread of misinformation. This study seeks to make a timely intervention to the information landscape through a COVID-19 "fake news", misinformation, and disinformation website. In this article, we introduce CoVerifi, a web application which combines both the power of machine learning and the power of human feedback to assess the credibility of news. By allowing users the ability to "vote" on news content, the CoVerifi platform will allow us to release labelled data as open source, which will enable further research on preventing the spread of COVID-19-related misinformation. We discuss the development of CoVerifi and the potential utility of deploying the system at scale for combating the COVID-19 "infodemic".

摘要

与新冠病毒相关的错误信息、虚假信息和“假新闻”泛滥,这使得世界卫生组织总干事将此称为“信息疫情”。鉴于互联网上新冠病毒相关内容数量庞大,许多人发现难以评估其真实性。弱势群体和边缘化群体正被误导,并承受着巨大压力。“假新闻”还引发了骚乱和抢购潮。然而,以研究为主导的个人网站在提供准确信息方面能发挥重要作用。例如,约翰·霍普金斯大学冠状病毒资源中心网站在谷歌上有超过8100万个相关链接。随着新冠病毒的爆发,以及人们认识到虚假新闻有可能显著影响公众的信念,需要新的策略来防止错误信息的传播。本研究旨在通过一个关于新冠病毒“假新闻”、错误信息和虚假信息的网站,对信息环境进行及时干预。在本文中,我们介绍了CoVerifi,这是一个网络应用程序,它结合了机器学习的力量和人类反馈的力量来评估新闻的可信度。通过允许用户对新闻内容进行“投票”,CoVerifi平台将使我们能够以开源形式发布带标签的数据,这将有助于进一步研究如何防止与新冠病毒相关的错误信息传播。我们讨论了CoVerifi的开发情况以及大规模部署该系统以对抗新冠病毒“信息疫情”的潜在效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5da1/7825993/31750697254f/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验