Suppr超能文献

纵向大规模研究与飓风相关的社交媒体话题:一种基于Transformer的方法。

Examining hurricane-related social media topics longitudinally and at scale: A transformer-based approach.

作者信息

Murthy Dhiraj, Kurz Sophia Elisavet, Anand Tanvi, Hornick Sonali, Lakuduva Nandhini, Sun Jerry

机构信息

Moody College of Communication, Department of Sociology, and School of Information, University of Texas at Austin, Austin, Texas, United States of America.

Computational Media Lab, University of Texas at Austin, Austin, Texas, United States of America.

出版信息

PLoS One. 2025 Jan 24;20(1):e0316852. doi: 10.1371/journal.pone.0316852. eCollection 2025.

Abstract

Instead of turning to emergency phone systems, social media platforms, such as Twitter, have emerged as alternative and sometimes preferred venues for members of the public in the US to communicate during hurricanes and other natural disasters. However, relevant posts are likely to be missed by responders given the volume of content on platforms. Previous work successfully identified relevant posts through machine-learned methods, but depended on human annotators. Our study indicates that a GPU-accelerated version of BERTopic, a transformer-based topic model, can be used without human training to successfully discern topics during multiple hurricanes. We use 1.7 million tweets from four US hurricanes over seven years and categorize identified topics as temporal constructs. Some of the more prominent topics related to disaster relief, user concerns, and weather conditions. Disaster managers can use our model, data, and constructs to be aware of the types of themes social media users are producing and consuming during hurricanes.

摘要

在美国,社交媒体平台(如推特)已成为公众在飓风和其他自然灾害期间进行交流的替代场所,有时甚至是首选场所,而不是求助于应急电话系统。然而,由于平台上的内容量巨大,响应者很可能会错过相关帖子。先前的工作通过机器学习方法成功识别了相关帖子,但依赖于人工标注。我们的研究表明,基于Transformer的主题模型BERTopic的GPU加速版本无需人工训练,就能在多次飓风期间成功辨别主题。我们使用了七年来来自美国四次飓风的170万条推文,并将识别出的主题归类为时间结构。一些较为突出的主题与救灾、用户关注和天气状况有关。灾害管理人员可以使用我们的模型、数据和结构,了解社交媒体用户在飓风期间产生和关注的主题类型。

相似文献

5
A novel surveillance approach for disaster mental health.一种针对灾难心理健康的新型监测方法。
PLoS One. 2017 Jul 19;12(7):e0181233. doi: 10.1371/journal.pone.0181233. eCollection 2017.
6
Rapid assessment of disaster damage using social media activity.利用社交媒体活动快速评估灾害损失。
Sci Adv. 2016 Mar 11;2(3):e1500779. doi: 10.1126/sciadv.1500779. eCollection 2016 Mar.

本文引用的文献

3
CoVerifi: A COVID-19 news verification system.CoVerifi:一个新冠疫情新闻核实系统。
Online Soc Netw Media. 2021 Mar;22:100123. doi: 10.1016/j.osnem.2021.100123. Epub 2021 Jan 23.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验