Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
Department of Gastroenterology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, China.
Med. 2021 Apr 9;2(4):435-447.e4. doi: 10.1016/j.medj.2020.12.013. Epub 2021 Jan 8.
To develop a sensitive risk score predicting the risk of mortality in patients with coronavirus disease 2019 (COVID-19) using complete blood count (CBC).
We performed a retrospective cohort study from a total of 13,138 inpatients with COVID-19 in Hubei, China, and Milan, Italy. Among them, 9,810 patients with 2 CBC records from Hubei were assigned to the training cohort. CBC parameters were analyzed as potential predictors for all-cause mortality and were selected by the generalized linear mixed model (GLMM).
Five risk factors were derived to construct a composite score (PAWNN score) using the Cox regression model, including platelet counts, age, white blood cell counts, neutrophil counts, and neutrophil:lymphocyte ratio. The PAWNN score showed good accuracy for predicting mortality in 10-fold cross-validation (AUROCs 0.92-0.93) and subsets with different quartile intervals of follow-up and preexisting diseases. The performance of the score was further validated in 2,949 patients with only 1 CBC record from the Hubei cohort (AUROC 0.97) and 227 patients from the Italian cohort (AUROC 0.80). The latent Markov model (LMM) demonstrated that the PAWNN score has good prediction power for transition probabilities between different latent conditions.
The PAWNN score is a simple and accurate risk assessment tool that can predict the mortality for COVID-19 patients during their entire hospitalization. This tool can assist clinicians in prioritizing medical treatment of COVID-19 patients.
This work was supported by National Key R&D Program of China (2016YFF0101504, 2016YFF0101505, 2020YFC2004702, 2020YFC0845500), the Key R&D Program of Guangdong Province (2020B1111330003), and the medical flight plan of Wuhan University (TFJH2018006).
利用全血细胞计数(CBC)开发一种敏感的风险评分,以预测 2019 年冠状病毒病(COVID-19)患者的死亡风险。
我们对来自中国湖北和意大利米兰的共 13138 例 COVID-19 住院患者进行了回顾性队列研究。其中,9810 例来自湖北的患者有 2 次 CBC 记录,被分配到训练队列。使用广义线性混合模型(GLMM)分析 CBC 参数作为全因死亡率的潜在预测因子,并进行选择。
使用 Cox 回归模型从 5 个风险因素中得出一个复合评分(PAWNN 评分),包括血小板计数、年龄、白细胞计数、中性粒细胞计数和中性粒细胞与淋巴细胞比值。PAWNN 评分在 10 倍交叉验证(AUROCs 0.92-0.93)和具有不同四分位间隔随访和预先存在疾病的亚组中对死亡率具有良好的预测准确性。该评分在来自湖北队列的仅 1 次 CBC 记录的 2949 例患者(AUROC 0.97)和意大利队列的 227 例患者(AUROC 0.80)中进一步得到验证。潜在马尔可夫模型(LMM)表明,PAWNN 评分对不同潜在状态之间的转移概率具有良好的预测能力。
PAWNN 评分是一种简单而准确的风险评估工具,可以预测 COVID-19 患者在整个住院期间的死亡率。该工具可以帮助临床医生优先考虑 COVID-19 患者的治疗。
本工作得到了国家重点研发计划(2016YFF0101504、2016YFF0101505、2020YFC2004702、2020YFC0845500)、广东省重点研发计划(2020B1111330003)和武汉大学医学腾飞计划(TFJH2018006)的支持。